ATP2B3: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Plasma membrane calcium-transporting ATPase 3''' is an [[enzyme]] that in humans is encoded by the ''ATP2B3'' [[gene]].<ref name="pmid8187550">{{cite journal | vauthors = Wang MG, Yi H, Hilfiker H, Carafoli E, Strehler EE, McBride OW | title = Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26→p25 and Xq28, respectively | journal = Cytogenet Cell Genet | volume = 67 | issue = 1 | pages = 41–5 |date=Jun 1994 | pmid = 8187550 | pmc = | doi =10.1159/000133794 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: ATP2B3 ATPase, Ca++ transporting, plasma membrane 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=492| accessdate = }}</ref> | ||
}} | |||
{{ | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = The protein encoded by this gene belongs to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. These enzymes remove bivalent calcium ions from eukaryotic cells against very large concentration gradients and play a critical role in intracellular calcium homeostasis. The mammalian plasma membrane calcium ATPase | | summary_text = The protein encoded by this gene belongs to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. These enzymes remove bivalent calcium ions from eukaryotic cells against very large concentration gradients and play a critical role in intracellular calcium homeostasis. The mammalian plasma membrane calcium ATPase [[isoform]]s are encoded by at least four separate genes and the diversity of these enzymes is further increased by [[alternative splicing]] of transcripts. The expression of different isoforms and splice variants is regulated in a developmental, tissue- and cell type-specific manner, suggesting that these pumps are functionally adapted to the physiological needs of particular cells and tissues. This gene encodes the plasma membrane calcium ATPase isoform 3. Alternatively spliced transcript variants encoding different isoforms have been identified.<ref name="entrez">{{cite web | title = Entrez Gene: ATP2B3 ATPase, Ca++ transporting, plasma membrane 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=492| accessdate = }}</ref> | ||
}} | }} | ||
==References== | ==References== | ||
{{reflist| | {{reflist}} | ||
==External links== | |||
* {{UCSC gene info|ATP2B3}} | |||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Møller JV, Juul B, le Maire M |title=Structural organization, ion transport, and energy transduction of P-type ATPases. |journal=Biochim. Biophys. Acta |volume=1286 |issue= 1 |pages= 1–51 |year= 1996 |pmid= 8634322 |doi= 10.1016/0304-4157(95)00017-8}} | ||
*{{cite journal | | *{{cite journal | vauthors=Strehler EE, Zacharias DA |title=Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. |journal=Physiol. Rev. |volume=81 |issue= 1 |pages= 21–50 |year= 2001 |pmid= 11152753 |doi= }} | ||
*{{cite journal | | *{{cite journal | vauthors=Strehler EE, Treiman M |title=Calcium pumps of plasma membrane and cell interior. |journal=Curr. Mol. Med. |volume=4 |issue= 3 |pages= 323–35 |year= 2004 |pmid= 15101689 |doi=10.2174/1566524043360735 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Brandt P, Neve RL, Kammesheidt A |title=Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. |journal=J. Biol. Chem. |volume=267 |issue= 7 |pages= 4376–85 |year= 1992 |pmid= 1531651 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Stauffer TP, Hilfiker H, Carafoli E, Strehler EE |title=Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. |journal=J. Biol. Chem. |volume=269 |issue= 50 |pages= 32022 |year= 1995 |pmid= 7989379 |doi= }} | ||
*{{cite journal | | *{{cite journal | vauthors=Stauffer TP, Hilfiker H, Carafoli E, Strehler EE |title=Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. |journal=J. Biol. Chem. |volume=268 |issue= 34 |pages= 25993–6003 |year= 1994 |pmid= 8245032 |doi= }} | ||
*{{cite journal | vauthors=Brown BJ, Hilfiker H, DeMarco SJ |title=Primary structure of human plasma membrane Ca(2+)-ATPase isoform 3. |journal=Biochim. Biophys. Acta |volume=1283 |issue= 1 |pages= 10–3 |year= 1996 |pmid= 8765088 |doi=10.1016/0005-2736(96)00108-3 |display-authors=etal}} | |||
*{{cite journal | | *{{cite journal | vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Mallon AM, Platzer M, Bate R |title=Comparative genome sequence analysis of the Bpa/Str region in mouse and Man. |journal=Genome Res. |volume=10 |issue= 6 |pages= 758–75 |year= 2000 |pmid= 10854409 |doi=10.1101/gr.10.6.758 | pmc=310879 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Moreau R, Daoud G, Masse A |title=Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta. |journal=Mol. Reprod. Dev. |volume=65 |issue= 3 |pages= 283–8 |year= 2004 |pmid= 12784250 |doi= 10.1002/mrd.10303 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Martin R, Harvey NC, Crozier SR |title=Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. |journal=Bone |volume=40 |issue= 5 |pages= 1203–8 |year= 2007 |pmid= 17336174 |doi= 10.1016/j.bone.2006.12.060 |display-authors=etal}} | ||
*{{cite journal | | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{ | {{ATPases}} | ||
{{ | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{gene-X-stub}} |
Latest revision as of 18:24, 29 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Plasma membrane calcium-transporting ATPase 3 is an enzyme that in humans is encoded by the ATP2B3 gene.[1][2]
The protein encoded by this gene belongs to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. These enzymes remove bivalent calcium ions from eukaryotic cells against very large concentration gradients and play a critical role in intracellular calcium homeostasis. The mammalian plasma membrane calcium ATPase isoforms are encoded by at least four separate genes and the diversity of these enzymes is further increased by alternative splicing of transcripts. The expression of different isoforms and splice variants is regulated in a developmental, tissue- and cell type-specific manner, suggesting that these pumps are functionally adapted to the physiological needs of particular cells and tissues. This gene encodes the plasma membrane calcium ATPase isoform 3. Alternatively spliced transcript variants encoding different isoforms have been identified.[2]
References
- ↑ Wang MG, Yi H, Hilfiker H, Carafoli E, Strehler EE, McBride OW (Jun 1994). "Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26→p25 and Xq28, respectively". Cytogenet Cell Genet. 67 (1): 41–5. doi:10.1159/000133794. PMID 8187550.
- ↑ 2.0 2.1 "Entrez Gene: ATP2B3 ATPase, Ca++ transporting, plasma membrane 3".
External links
- Human ATP2B3 genome location and ATP2B3 gene details page in the UCSC Genome Browser.
Further reading
- Møller JV, Juul B, le Maire M (1996). "Structural organization, ion transport, and energy transduction of P-type ATPases". Biochim. Biophys. Acta. 1286 (1): 1–51. doi:10.1016/0304-4157(95)00017-8. PMID 8634322.
- Strehler EE, Zacharias DA (2001). "Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps". Physiol. Rev. 81 (1): 21–50. PMID 11152753.
- Strehler EE, Treiman M (2004). "Calcium pumps of plasma membrane and cell interior". Curr. Mol. Med. 4 (3): 323–35. doi:10.2174/1566524043360735. PMID 15101689.
- Brandt P, Neve RL, Kammesheidt A, et al. (1992). "Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels". J. Biol. Chem. 267 (7): 4376–85. PMID 1531651.
- Stauffer TP, Hilfiker H, Carafoli E, Strehler EE (1995). "Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes". J. Biol. Chem. 269 (50): 32022. PMID 7989379.
- Stauffer TP, Hilfiker H, Carafoli E, Strehler EE (1994). "Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes". J. Biol. Chem. 268 (34): 25993–6003. PMID 8245032.
- Brown BJ, Hilfiker H, DeMarco SJ, et al. (1996). "Primary structure of human plasma membrane Ca(2+)-ATPase isoform 3". Biochim. Biophys. Acta. 1283 (1): 10–3. doi:10.1016/0005-2736(96)00108-3. PMID 8765088.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Mallon AM, Platzer M, Bate R, et al. (2000). "Comparative genome sequence analysis of the Bpa/Str region in mouse and Man". Genome Res. 10 (6): 758–75. doi:10.1101/gr.10.6.758. PMC 310879. PMID 10854409.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Moreau R, Daoud G, Masse A, et al. (2004). "Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta". Mol. Reprod. Dev. 65 (3): 283–8. doi:10.1002/mrd.10303. PMID 12784250.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Martin R, Harvey NC, Crozier SR, et al. (2007). "Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual". Bone. 40 (5): 1203–8. doi:10.1016/j.bone.2006.12.060. PMID 17336174.
This article on a gene on the human X chromosome and/or its associated protein is a stub. You can help Wikipedia by expanding it. |