Cell division control protein 42 homolog, also known as Cdc42, is a protein involved in regulation of the cell cycle. It was originally identified in S. cerevisiae (yeast) as a mediator of cell division, and is now known to influence a variety of signaling events and cellular processes in a variety of organisms from yeast to mammals.
Human Cdc42 is a small GTPase of the Rho family, which regulates signaling pathways that control diverse cellular functions including cell morphology, cell migration, endocytosis and cell cycle progression.[1] Rho GTPases are central to dynamic actin cytoskeletal assembly and rearrangement that are the basis of cell-cell adhesion and migration. Activated Cdc42 activates by conformational changes[2] p21-activated kinases PAK1 and PAK2, which in turn initiate actin reorganization and regulate cell adhesion, migration, and invasion.[3]
Structure
Cdc42 is a homodimer with A and B chains.[4] Its total length is 191 amino acids and its theoretical weight is 21.33 KDa.[4] Its sequence domains include a P-loop containing nucleoside triphosphate hydrolase and a small GTP-binding protein domain.[4]
Cdc42 cycles between an active GTP-bound state and an inactive GDP-bound state. This process is regulated by guanine nucleotide exchange factors (GEFs) which promote the exchange of bound GDP for free GTP, GTPase activating proteins (GAPs) which increase GTP hydrolysis activity, and GDP dissociation inhibitors which inhibit the dissociation of the nucleotide from the GTPase.[5]
Role in cancer
Recently, Cdc42 has been shown to actively assist in cancer progression. Several studies have established the basis for this and hypothesized about the underlying mechanisms.
Cdc42 is overexpressed in non-small cell lung cancer, colorectal adenocarcinoma, melanoma, breast cancer, and testicular cancer.[6] Elevated levels of the protein have been correlated with negative patient survival. Cdc42 has also been shown to be required for both G1-S phase progression and mitosis, and it also modulates the transcription factors SRF, STAT3, and NFkB.[6] It has been hypothesized that targeting Cdc42 in conjunction with chemotherapy may be an effective cancer treatment strategy.
In one study studying the role of Cdc42 in cervical cancer, immunohistochemistry was used to detect Cdc42 expression in three types of tissues: normal cervical tissues, cervical intraepithelial neoplasia (CIN) I or below, CIN II or above, and cervical cancer tissues.[7] Cdc42 expression was gradually increased showing significant difference and was significantly higher in HeLa cells than in regular cells. The migration ability of HeLa cells transfected with Cdc42 was higher than that of non-transfected cells.[7] It was proposed that the overexpression of Cdc42 can promote filopodia formation in HeLa cells. Cdc42 overexpression significantly improved the ability of cervical cancer cells to migrate, possibly due to improved pseudopodia formation.[7]
Another study found that Cdc42 drives the process of initiating a metastatic tumor in a new tissue by promoting the expression of β1 integrin, an adhesion receptor known to be involved in metastasis.[8] Levels of β1 integrin were reduced in Cdc42-deficient cells. β1 integrin is important for adhesion to the extracellular matrix, and could be important for the initial attachment to endothelial cells as well. Knocking down β1 integrin inhibited cancer cell migration, whereas overexpressing the integrin in Cdc42-deficient cells restored endothelial invasion.[8] Cdc42 promoted β1 integrin expression by activating a transcription factor called SRF. A continually active form of the transcription factor was also capable of restoring endothelial insertion to cancer cells lacking Cdc42.
Normal cancer cells and Cdc42-deficient cancer cells have also been compared in vivo. When both types of cells were injected into mouse tail veins, control cells spread out more on the vessel endothelium within minutes, suggesting that Cdc42 assists in cell migration.[8] After six weeks, the control cells had generated more metastases than the Cdc42-deficient cells. Invading cancer cells send out protrusions that reach down between neighboring endothelial cells to contact the underlying basement membrane. The cancer cells then spread out on this extracellular matrix so that the endothelial cells retract, and allow the invaders to insert themselves between them.[8] In the absence of Cdc42, cancer cells failed to spread out on the basement membrane, and Cdc42-deficient cells showed reduced adhesion to extracellular matrix-coated coverslips.[8] Cdc42 therefore promotes the attachment of cancer cells to both endothelial cells and the underlying basement membrane during transendothelial migration.
The small molecular inhibitor AZA197 has been used to inhibit Cdc42 in the treatment of KRAS mutant colorectal cancers.[9] There was evidence that Cdc42 inhibition by AZA197 treatment suppresses proliferative and pro-survival signaling pathways via PAK1-ERK signaling and reduces colon cancer cell migration and invasion.[9] In mice, systemic AZA197 treatment in vivo reduced primary tumor growth and prolonged survival.[9] Therapy targeting Rho GTPase Cdc42 signaling pathways may be effective for treatment of patients with advanced colon cancer overexpressing Cdc42, and particularly those with KRAS-mutant disease.
↑Qadir MI, Parveen A, Ali M (October 2015). "Cdc42: Role in Cancer Management". Chemical Biology & Drug Design. 86 (4): 432–9. doi:10.1111/cbdd.12556. PMID25777055.
↑ 7.07.17.2Ye H, Zhang Y, Geng L, Li Z (February 2015). "Cdc42 expression in cervical cancer and its effects on cervical tumor invasion and migration". International Journal of Oncology. 46 (2): 757–63. doi:10.3892/ijo.2014.2748. PMID25394485.
↑Li R, Zhang B, Zheng Y (December 1997). "Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190". The Journal of Biological Chemistry. 272 (52): 32830–5. doi:10.1074/jbc.272.52.32830. PMID9407060.
↑ 12.012.1Low BC, Lim YP, Lim J, Wong ES, Guy GR (November 1999). "Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42". The Journal of Biological Chemistry. 274 (46): 33123–30. doi:10.1074/jbc.274.46.33123. PMID10551883.
↑ 13.013.113.213.3Zhang B, Chernoff J, Zheng Y (April 1998). "Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA". The Journal of Biological Chemistry. 273 (15): 8776–82. doi:10.1074/jbc.273.15.8776. PMID9535855.
↑ 14.014.1Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC1847948. PMID17353931.
↑Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P (January 1998). "Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity". FEBS Letters. 422 (2): 269–73. doi:10.1016/S0014-5793(98)00020-9. PMID9490022.
↑Soltau M, Richter D, Kreienkamp HJ (December 2002). "The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42". Molecular and Cellular Neurosciences. 21 (4): 575–83. doi:10.1006/mcne.2002.1201. PMID12504591.
↑Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (October 2001). "Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex". Current Biology. 11 (21): 1645–55. doi:10.1016/S0960-9822(01)00506-1. PMID11696321.
↑Miki H, Yamaguchi H, Suetsugu S, Takenawa T (December 2000). "IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling". Nature. 408 (6813): 732–5. doi:10.1038/35047107. PMID11130076.
↑Low BC, Seow KT, Guy GR (May 2000). "Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2". The Journal of Biological Chemistry. 275 (19): 14415–22. doi:10.1074/jbc.275.19.14415. PMID10799524.
↑Low BC, Seow KT, Guy GR (December 2000). "The BNIP-2 and Cdc42GAP homology domain of BNIP-2 mediates its homophilic association and heterophilic interaction with Cdc42GAP". The Journal of Biological Chemistry. 275 (48): 37742–51. doi:10.1074/jbc.M004897200. PMID10954711.
↑Qin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J (August 2003). "BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis". Biochemical and Biophysical Research Communications. 308 (2): 379–85. doi:10.1016/S0006-291X(03)01387-1. PMID12901880.
↑Hirsch DS, Pirone DM, Burbelo PD (January 2001). "A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes". The Journal of Biological Chemistry. 276 (2): 875–83. doi:10.1074/jbc.M007039200. PMID11035016.
↑Alberts AS, Bouquin N, Johnston LH, Treisman R (April 1998). "Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7". The Journal of Biological Chemistry. 273 (15): 8616–22. doi:10.1074/jbc.273.15.8616. PMID9535835.
↑Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (September 1996). "Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1". The Journal of Biological Chemistry. 271 (38): 23363–7. doi:10.1074/jbc.271.38.23363. PMID8798539.
↑Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (June 2002). "Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170". Cell. 109 (7): 873–85. doi:10.1016/S0092-8674(02)00800-0. PMID12110184.
↑Joyal JL, Annan RS, Ho YD, Huddleston ME, Carr SA, Hart MJ, Sacks DB (June 1997). "Calmodulin modulates the interaction between IQGAP1 and Cdc42. Identification of IQGAP1 by nanoelectrospray tandem mass spectrometry". The Journal of Biological Chemistry. 272 (24): 15419–25. doi:10.1074/jbc.272.24.15419. PMID9182573.
↑Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche-Vane N, McPherson PS (October 2001). "Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP". Nature Cell Biology. 3 (10): 927–32. doi:10.1038/ncb1001-927. PMID11584276.
↑Snyder JT, Worthylake DK, Rossman KL, Betts L, Pruitt WM, Siderovski DP, Der CJ, Sondek J (June 2002). "Structural basis for the selective activation of Rho GTPases by Dbl exchange factors". Nature Structural Biology. 9 (6): 468–75. doi:10.1038/nsb796. PMID12006984.
↑Böck BC, Vacratsis PO, Qamirani E, Gallo KA (May 2000). "Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation". The Journal of Biological Chemistry. 275 (19): 14231–41. doi:10.1074/jbc.275.19.14231. PMID10799501.
↑Seoh ML, Ng CH, Yong J, Lim L, Leung T (March 2003). "ArhGAP15, a novel human RacGAP protein with GTPase binding property". FEBS Letters. 539 (1–3): 131–7. doi:10.1016/S0014-5793(03)00213-8. PMID12650940.
↑Stevens WK, Vranken W, Goudreau N, Xiang H, Xu P, Ni F (May 1999). "Conformation of a Cdc42/Rac interactive binding peptide in complex with Cdc42 and analysis of the binding interface". Biochemistry. 38 (19): 5968–75. doi:10.1021/bi990426u. PMID10320322.
↑Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J, Kajikawa E, Khosravi-Far R, Blagoev B, Mann M (May 2002). "Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain". Oncogene. 21 (24): 3939–48. doi:10.1038/sj.onc.1205478. PMID12032833.
↑ 40.040.1Joberty G, Petersen C, Gao L, Macara IG (August 2000). "The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42". Nature Cell Biology. 2 (8): 531–9. doi:10.1038/35019573. PMID10934474.
↑ 41.041.1Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (February 2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C". Genes to Cells. 6 (2): 107–19. doi:10.1046/j.1365-2443.2001.00404.x. PMID11260256.
↑Qiu RG, Abo A, Steven Martin G (June 2000). "A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation". Current Biology. 10 (12): 697–707. doi:10.1016/S0960-9822(00)00535-2. PMID10873802.
↑Neudauer CL, Joberty G, Macara IG (January 2001). "PIST: a novel PDZ/coiled-coil domain binding partner for the rho-family GTPase TC10". Biochemical and Biophysical Research Communications. 280 (2): 541–7. doi:10.1006/bbrc.2000.4160. PMID11162552.
↑Walker SJ, Wu WJ, Cerione RA, Brown HA (May 2000). "Activation of phospholipase D1 by Cdc42 requires the Rho insert region". The Journal of Biological Chemistry. 275 (21): 15665–8. doi:10.1074/jbc.M000076200. PMID10747870.
↑Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (September 2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". The Journal of Biological Chemistry. 278 (36): 34641–53. doi:10.1074/jbc.M304594200. PMID12819203.
↑Aspenström P (July 1997). "A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton". Current Biology. 7 (7): 479–87. doi:10.1016/S0960-9822(06)00219-3. PMID9210375.
↑ 49.049.1Tian L, Nelson DL, Stewart DM (March 2000). "Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules". The Journal of Biological Chemistry. 275 (11): 7854–61. doi:10.1074/jbc.275.11.7854. PMID10713100.
↑Carlier MF, Nioche P, Broutin-L'Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D (July 2000). "GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex". The Journal of Biological Chemistry. 275 (29): 21946–52. doi:10.1074/jbc.M000687200. PMID10781580.
↑Miki H, Sasaki T, Takai Y, Takenawa T (January 1998). "Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP". Nature. 391 (6662): 93–6. doi:10.1038/34208. PMID9422512.
↑Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (March 2000). "Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein". Nature. 404 (6774): 151–8. doi:10.1038/35004513. PMID10724160.
↑Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, Mccormick F, Francke U, Abo A (March 1996). "Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization". Cell. 84 (5): 723–34. doi:10.1016/S0092-8674(00)81050-8. PMID8625410.
2ngr: TRANSITION STATE COMPLEX FOR GTP HYDROLYSIS BY CDC42: COMPARISONS OF THE HIGH RESOLUTION STRUCTURES FOR CDC42 BOUND TO THE ACTIVE AND CATALYTICALLY COMPROMISED FORMS OF THE CDC42-GAP.