NDUFS4: Difference between revisions

Jump to navigation Jump to search
imported>Boghog
consistent citation formatting
 
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}
'''NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial''' also known as '''NADH-ubiquinone oxidoreductase 18 kDa subunit''' is an [[enzyme]] that in humans is encoded by the ''NDUFS4'' [[gene]].<ref name="pmid9463323">{{cite journal | vauthors = van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J | title = Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit | journal = American Journal of Human Genetics | volume = 62 | issue = 2 | pages = 262–8 | date = Feb 1998 | pmid = 9463323 | pmc = 1376892 | doi = 10.1086/301716 }}</ref><ref name="pmid9763677">{{cite journal | vauthors = Emahazion T, Beskow A, Gyllensten U, Brookes AJ | title = Intron based radiation hybrid mapping of 15 complex I genes of the human electron transport chain | journal = Cytogenetics and Cell Genetics | volume = 82 | issue = 1-2 | pages = 115–9 | date = Nov 1998 | pmid = 9763677 | pmc =  | doi = 10.1159/000015082 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4724| accessdate = }}</ref>
'''NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial (NDUFS4)''' also known as '''NADH-ubiquinone oxidoreductase 18 kDa subunit''' is an [[enzyme]] that in humans is encoded by the ''NDUFS4'' [[gene]].<ref name="pmid9463323">{{cite journal | vauthors = van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J | title = Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit | journal = American Journal of Human Genetics | volume = 62 | issue = 2 | pages = 262–8 | date = February 1998 | pmid = 9463323 | pmc = 1376892 | doi = 10.1086/301716 }}</ref><ref name="pmid9763677">{{cite journal | vauthors = Emahazion T, Beskow A, Gyllensten U, Brookes AJ | title = Intron based radiation hybrid mapping of 15 complex I genes of the human electron transport chain | journal = Cytogenetics and Cell Genetics | volume = 82 | issue = 1-2 | pages = 115–9 | date = Nov 1998 | pmid = 9763677 | pmc =  | doi = 10.1159/000015082 }}</ref> This gene encodes an nuclear-encoded accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase ([[Respiratory complex I|complex I]], or NADH:ubiquinone oxidoreductase). Complex I removes electrons from [[NADH]] and passes them to the electron acceptor [[Coenzyme Q10|ubiquinone]]. [[Mutation|Mutations]] in this gene can cause mitochondrial complex I deficiencies such as [[Leigh syndrome]].<ref name="entrez">{{cite web | title = Entrez Gene: NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4724| access-date = }}{{PD-notice}}</ref>
 
== Structure ==
 
''NDUFS4'' is located on the [[Locus (genetics)|q arm]] of [[chromosome 5]] in position 11.2 and has 8 [[Exon|exons]].<ref name="entrez2">{{cite web|url=http://www.ncbi.nlm.nih.gov/gene/65260|title=Entrez Gene: Cytochrome c oxidase assembly factor 7 (putative)|access-date=2018-08-08}}{{PD-notice}}</ref> The ''NDUFS4'' gene produces a 20.1 kDa [[protein]] composed of 175 [[Amino acid|amino acids]].<ref>{{Cite web|url=https://amino.heartproteome.org/web/protein/O43181|title=Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information|last=Yao|first=Daniel|website=amino.heartproteome.org|access-date=2018-08-28}}</ref><ref>{{cite journal | vauthors = Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P | title = Integration of cardiac proteome biology and medicine by a specialized knowledgebase | journal = Circulation Research | volume = 113 | issue = 9 | pages = 1043–53 | date = October 2013 | pmid = 23965338 | pmc = 4076475 | doi = 10.1161/CIRCRESAHA.113.301151 }}</ref> NDUFS4, the protein encoded by this gene, is a member of the complex I NDUFS4 subunit family. It is a [[peripheral membrane protein]] located on the [[Mitochondrial matrix|matrix]] side of the [[inner mitochondrial membrane]]. NDUFS4 is a component of the iron-sulfur (IP) fragment of the enzyme and contains a [[Signal peptide|transit peptide]] domain, 4 turns, 6 [[Beta sheet|beta strands]], and 4 [[Alpha helix|alpha helixes]].<ref>{{Cite web|url=https://www.uniprot.org/uniprot/O43181|title=NDUFS4 - NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial precursor - Homo sapiens (Human) - NDUFS4 gene & protein|website=www.uniprot.org|language=en|access-date=2018-08-28}}{{CC-notice|cc=by4}}</ref><ref name=":0">{{cite journal | vauthors =  | title = UniProt: the universal protein knowledgebase | journal = Nucleic Acids Research | volume = 45 | issue = D1 | pages = D158-D169 | date = January 2017 | pmid = 27899622 | pmc = 5210571 | doi = 10.1093/nar/gkw1099 }}</ref> Alternative splicing results in multiple transcript variants.<ref name="entrez" />


== Function ==
== Function ==
Line 8: Line 12:
== Clinical significance ==
== Clinical significance ==


Mutations in the ACAD9 gene are associated with Mitochondrial Complex I Deficiency, which is autosomal recessive. This deficiency is the most common enzymatic defect of the oxidative phosphorylation disorders.<ref>{{cite journal | vauthors = Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR | title = NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency | journal = The Journal of Clinical Investigation | volume = 114 | issue = 6 | pages = 837–45 | date = Sep 2004 | pmid = 15372108 | doi = 10.1172/JCI20683 | pmc=516258}}</ref><ref>{{cite journal | vauthors = McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, Fletcher JM, Dixon JW, Collins FA, Turnbull DM, Taylor RW, Thorburn DR | title = De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency | journal = Annals of Neurology | volume = 55 | issue = 1 | pages = 58–64 | date = Jan 2004 | pmid = 14705112 | doi = 10.1002/ana.10787 }}</ref> Mitochondrial complex I deficiency shows extreme genetic heterogeneity and can be caused by mutation in nuclear-encoded genes or in mitochondrial-encoded genes. There are no obvious genotype-phenotype correlations, and inference of the underlying basis from the clinical or biochemical presentation is difficult, if not impossible.<ref>{{cite journal | vauthors = Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, Strecker V, Graf E, Mayr JA, Herberg U, Hennermann JB, Klopstock T, Kuhn KA, Ahting U, Sperl W, Wilichowski E, Hoffmann GF, Tesarova M, Hansikova H, Zeman J, Plecko B, Zeviani M, Wittig I, Strom TM, Schuelke M, Freisinger P, Meitinger T, Prokisch H | title = Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing | journal = Journal of Medical Genetics | volume = 49 | issue = 4 | pages = 277–83 | date = Apr 2012 | pmid = 22499348 | doi = 10.1136/jmedgenet-2012-100846 }}</ref> However, the majority of cases are caused by mutations in nuclear-encoded genes.<ref>{{cite journal | vauthors = Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP | title = Isolated complex I deficiency in children: clinical, biochemical and genetic aspects | journal = Human Mutation | volume = 15 | issue = 2 | pages = 123–34 | date = 2000 | pmid = 10649489 | doi = 10.1002/(SICI)1098-1004(200002)15:2<123::AID-HUMU1>3.0.CO;2-P }}</ref><ref>{{cite journal | vauthors = Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA | title = Respiratory chain complex I deficiency | journal = American Journal of Medical Genetics | volume = 106 | issue = 1 | pages = 37–45 | date = NaN | pmid = 11579423 | doi = 10.1002/ajmg.1397 }}</ref> It causes a wide range of clinical disorders, ranging from lethal neonatal disease to adult-onset neurodegenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, nonspecific encephalopathy, hypertrophic cardiomyopathy, myopathy, liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some forms of Parkinson disease.<ref>{{cite journal | vauthors = Robinson BH | title = Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect | journal = Biochimica et Biophysica Acta | volume = 1364 | issue = 2 | pages = 271–86 | date = May 1998 | pmid = 9593934 | doi=10.1016/s0005-2728(98)00033-4}}</ref> Complex I deficiency with autosomal recessive inheritance results from mutation in nuclear-encoded subunit genes, including [[NDUFV1]], [[NDUFV2]], [[NDUFS1]], [[NDUFS2]], [[NDUFS3]], [[NDUFS6]], [[NDUFS7]], [[NDUFS8]], [[NDUFA2]], [[NDUFA11]], [[NDUFAF3]], [[NDUFAF10]], [[NDUFB3]], [[NDUFB9]], [[ACAD9]], [[FOXRED1]], and [[MTFMT]].
Mutations in the NDUFS4 gene are associated with Mitochondrial Complex I Deficiency, which is [[Dominance (genetics)|autosomal recessive]]. This deficiency is the most common enzymatic defect of the [[oxidative phosphorylation]] disorders.<ref>{{cite journal | vauthors = Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR | title = NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency | journal = The Journal of Clinical Investigation | volume = 114 | issue = 6 | pages = 837–45 | date = September 2004 | pmid = 15372108 | pmc = 516258 | doi = 10.1172/JCI20683 }}</ref><ref>{{cite journal | vauthors = McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, Fletcher JM, Dixon JW, Collins FA, Turnbull DM, Taylor RW, Thorburn DR | title = De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency | journal = Annals of Neurology | volume = 55 | issue = 1 | pages = 58–64 | date = January 2004 | pmid = 14705112 | doi = 10.1002/ana.10787 }}</ref> Mitochondrial complex I deficiency shows extreme [[genetic heterogeneity]] and can be caused by mutation in nuclear-encoded genes or in mitochondrial-encoded genes. There are no obvious [[Genotype–phenotype distinction|genotype-phenotype]] correlations, and inference of the underlying basis from the clinical or biochemical presentation is difficult, if not impossible.<ref>{{cite journal | vauthors = Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, Strecker V, Graf E, Mayr JA, Herberg U, Hennermann JB, Klopstock T, Kuhn KA, Ahting U, Sperl W, Wilichowski E, Hoffmann GF, Tesarova M, Hansikova H, Zeman J, Plecko B, Zeviani M, Wittig I, Strom TM, Schuelke M, Freisinger P, Meitinger T, Prokisch H | title = Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing | journal = Journal of Medical Genetics | volume = 49 | issue = 4 | pages = 277–83 | date = April 2012 | pmid = 22499348 | doi = 10.1136/jmedgenet-2012-100846 }}</ref> However, the majority of cases are caused by mutations in nuclear-encoded genes.<ref>{{cite journal | vauthors = Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP | title = Isolated complex I deficiency in children: clinical, biochemical and genetic aspects | journal = Human Mutation | volume = 15 | issue = 2 | pages = 123–34 | date = 2000 | pmid = 10649489 | doi = 10.1002/(SICI)1098-1004(200002)15:2<123::AID-HUMU1>3.0.CO;2-P }}</ref><ref name="pmid11579423">{{cite journal | vauthors = Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA | title = Respiratory chain complex I deficiency | journal = American Journal of Medical Genetics | volume = 106 | issue = 1 | pages = 37–45 | date = 2001 | pmid = 11579423 | doi = 10.1002/ajmg.1397 }}</ref> It causes a wide range of clinical disorders, ranging from lethal neonatal disease to adult-onset neurodegenerative disorders. [[Phenotype|Phenotypes]] include [[macrocephaly]] with progressive [[leukodystrophy]], nonspecific [[encephalopathy]], [[hypertrophic cardiomyopathy]], [[myopathy]], [[liver disease]], [[Leigh syndrome]], [[Leber's hereditary optic neuropathy|Leber hereditary optic neuropathy]], and some forms of [[Parkinson's disease|Parkinson disease]].<ref>{{cite journal | vauthors = Robinson BH | title = Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect | journal = Biochimica et Biophysica Acta | volume = 1364 | issue = 2 | pages = 271–86 | date = May 1998 | pmid = 9593934 | doi = 10.1016/s0005-2728(98)00033-4 }}</ref> Complex I deficiency with autosomal recessive inheritance results from mutation in nuclear-encoded subunit genes, including [[NDUFV1]], [[NDUFV2]], [[NDUFS1]], [[NDUFS2]], [[NDUFS3]], [[NDUFS6]], [[NDUFS7]], [[NDUFS8]], [[NDUFA2]], [[NDUFA11]], [[NDUFAF3]], [[NDUFAF10]], [[NDUFB3]], [[NDUFB9]], [[ACAD9]], [[FOXRED1]], and [[MTFMT]].
 
== Interactions ==
 
NDUFS4 has been shown to have 58 binary [[Protein–protein interaction|protein-protein interactions]] including 57 co-complex interactions. NDUFS4 appears to interact with [[UBE2G2]].<ref>{{cite web | url = https://www.ebi.ac.uk/intact/interactions?conversationContext=3&query=NDUFS4 | title = 58 binary interactions found for search term NDUFS4 | work = IntAct Molecular Interaction Database | publisher = EMBL-EBI | access-date = 2018-08-28 }}</ref>


== References ==
== References ==
Line 15: Line 23:
== Further reading ==
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
* {{cite journal | vauthors = Papa S, Sardanelli AM, Scacco S, Petruzzella V, Technikova-Dobrova Z, Vergari R, Signorile A | title = The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade | journal = Journal of Bioenergetics and Biomembranes | volume = 34 | issue = 1 | pages = 1–10 | date = Feb 2002 | pmid = 11860175 | doi = 10.1023/A:1013863018115 }}
* {{cite journal | vauthors = Leshinsky-Silver E, Lebre AS, Minai L, Saada A, Steffann J, Cohen S, Rötig A, Munnich A, Lev D, Lerman-Sagie T | title = NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement | journal = Molecular Genetics and Metabolism | volume = 97 | issue = 3 | pages = 185–9 | date = July 2009 | pmid = 19364667 | doi = 10.1016/j.ymgme.2009.03.002 }}
* {{cite journal | vauthors = Pilkington SJ, Skehel JM, Gennis RB, Walker JE | title = Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase | journal = Biochemistry | volume = 30 | issue = 8 | pages = 2166–75 | date = Feb 1991 | pmid = 1900194 | doi = 10.1021/bi00222a021 }}
* {{cite journal | vauthors = Papa S, Sardanelli AM, Scacco S, Petruzzella V, Technikova-Dobrova Z, Vergari R, Signorile A | title = The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade | journal = Journal of Bioenergetics and Biomembranes | volume = 34 | issue = 1 | pages = 1–10 | date = February 2002 | pmid = 11860175 | doi = 10.1023/A:1013863018115 }}
* {{cite journal | vauthors = Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM, Smeitink JA | title = cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed | journal = Biochemical and Biophysical Research Communications | volume = 253 | issue = 2 | pages = 415–22 | date = Dec 1998 | pmid = 9878551 | doi = 10.1006/bbrc.1998.9786 }}
* {{cite journal | vauthors = Pilkington SJ, Skehel JM, Gennis RB, Walker JE | title = Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase | journal = Biochemistry | volume = 30 | issue = 8 | pages = 2166–75 | date = February 1991 | pmid = 1900194 | doi = 10.1021/bi00222a021 }}
* {{cite journal | vauthors = Triepels RH, Hanson BJ, van den Heuvel LP, Sundell L, Marusich MF, Smeitink JA, Capaldi RA | title = Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns | journal = The Journal of Biological Chemistry | volume = 276 | issue = 12 | pages = 8892–7 | date = Mar 2001 | pmid = 11112787 | doi = 10.1074/jbc.M009903200 }}
* {{cite journal | vauthors = Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM, Smeitink JA | title = cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed | journal = Biochemical and Biophysical Research Communications | volume = 253 | issue = 2 | pages = 415–22 | date = December 1998 | pmid = 9878551 | doi = 10.1006/bbrc.1998.9786 }}
* {{cite journal | vauthors = Papa S, Scacco S, Sardanelli AM, Vergari R, Papa F, Budde S, van den Heuvel L, Smeitink J | title = Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome | journal = FEBS Letters | volume = 489 | issue = 2-3 | pages = 259–62 | date = Feb 2001 | pmid = 11165261 | doi = 10.1016/S0014-5793(00)02334-6 }}
* {{cite journal | vauthors = Triepels RH, Hanson BJ, van den Heuvel LP, Sundell L, Marusich MF, Smeitink JA, Capaldi RA | title = Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns | journal = The Journal of Biological Chemistry | volume = 276 | issue = 12 | pages = 8892–7 | date = March 2001 | pmid = 11112787 | doi = 10.1074/jbc.M009903200 }}
* {{cite journal | vauthors = Petruzzella V, Vergari R, Puzziferri I, Boffoli D, Lamantea E, Zeviani M, Papa S | title = A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome | journal = Human Molecular Genetics | volume = 10 | issue = 5 | pages = 529–35 | date = Mar 2001 | pmid = 11181577 | doi = 10.1093/hmg/10.5.529 }}
* {{cite journal | vauthors = Papa S, Scacco S, Sardanelli AM, Vergari R, Papa F, Budde S, van den Heuvel L, Smeitink J | title = Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome | journal = FEBS Letters | volume = 489 | issue = 2-3 | pages = 259–62 | date = February 2001 | pmid = 11165261 | doi = 10.1016/S0014-5793(00)02334-6 }}
* {{cite journal | vauthors = Roef MJ, Reijngoud DJ, Jeneson JA, Berger R, de Meer K | title = Resting oxygen consumption and in vivo ADP are increased in myopathy due to complex I deficiency | journal = Neurology | volume = 58 | issue = 7 | pages = 1088–93 | date = Apr 2002 | pmid = 11940698 | doi = 10.1212/wnl.58.7.1088 }}
* {{cite journal | vauthors = Petruzzella V, Vergari R, Puzziferri I, Boffoli D, Lamantea E, Zeviani M, Papa S | title = A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome | journal = Human Molecular Genetics | volume = 10 | issue = 5 | pages = 529–35 | date = March 2001 | pmid = 11181577 | doi = 10.1093/hmg/10.5.529 }}
* {{cite journal | vauthors = Lee BH, Lee H, Xiong L, Zhu JK | title = A mitochondrial complex I defect impairs cold-regulated nuclear gene expression | journal = The Plant Cell | volume = 14 | issue = 6 | pages = 1235–51 | date = Jun 2002 | pmid = 12084824 | pmc = 150777 | doi = 10.1105/tpc.010433 }}
* {{cite journal | vauthors = Roef MJ, Reijngoud DJ, Jeneson JA, Berger R, de Meer K | title = Resting oxygen consumption and in vivo ADP are increased in myopathy due to complex I deficiency | journal = Neurology | volume = 58 | issue = 7 | pages = 1088–93 | date = April 2002 | pmid = 11940698 | doi = 10.1212/wnl.58.7.1088 }}
* {{cite journal | vauthors = Papa S | title = The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade | journal = Biochimica et Biophysica Acta | volume = 1555 | issue = 1-3 | pages = 147–53 | date = Sep 2002 | pmid = 12206907 | doi = 10.1016/S0005-2728(02)00270-0 }}
* {{cite journal | vauthors = Lee BH, Lee H, Xiong L, Zhu JK | title = A mitochondrial complex I defect impairs cold-regulated nuclear gene expression | journal = The Plant Cell | volume = 14 | issue = 6 | pages = 1235–51 | date = June 2002 | pmid = 12084824 | pmc = 150777 | doi = 10.1105/tpc.010433 }}
* {{cite journal | vauthors = Papa S | title = The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade | journal = Biochimica et Biophysica Acta | volume = 1555 | issue = 1-3 | pages = 147–53 | date = September 2002 | pmid = 12206907 | doi = 10.1016/S0005-2728(02)00270-0 }}
* {{cite journal | vauthors = Bénit P, Steffann J, Lebon S, Chretien D, Kadhom N, de Lonlay P, Goldenberg A, Dumez Y, Dommergues M, Rustin P, Munnich A, Rötig A | title = Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome | journal = Human Genetics | volume = 112 | issue = 5-6 | pages = 563–6 | date = May 2003 | pmid = 12616398 | doi = 10.1007/s00439-002-0884-2 }}
* {{cite journal | vauthors = Bénit P, Steffann J, Lebon S, Chretien D, Kadhom N, de Lonlay P, Goldenberg A, Dumez Y, Dommergues M, Rustin P, Munnich A, Rötig A | title = Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome | journal = Human Genetics | volume = 112 | issue = 5-6 | pages = 563–6 | date = May 2003 | pmid = 12616398 | doi = 10.1007/s00439-002-0884-2 }}
* {{cite journal | vauthors = Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den Heuvel LP, Smeitink JA, Papa S | title = Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex | journal = The Journal of Biological Chemistry | volume = 278 | issue = 45 | pages = 44161–7 | date = Nov 2003 | pmid = 12944388 | doi = 10.1074/jbc.M307615200 }}
* {{cite journal | vauthors = Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den Heuvel LP, Smeitink JA, Papa S | title = Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex | journal = The Journal of Biological Chemistry | volume = 278 | issue = 45 | pages = 44161–7 | date = November 2003 | pmid = 12944388 | doi = 10.1074/jbc.M307615200 }}
* {{cite journal | vauthors = Budde SM, van den Heuvel LP, Smeets RJ, Skladal D, Mayr JA, Boelen C, Petruzzella V, Papa S, Smeitink JA | title = Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I | journal = Journal of Inherited Metabolic Disease | volume = 26 | issue = 8 | pages = 813–5 | year = 2004 | pmid = 14765537 | doi = 10.1023/B:BOLI.0000010003.14113.af }}
* {{cite journal | vauthors = Budde SM, van den Heuvel LP, Smeets RJ, Skladal D, Mayr JA, Boelen C, Petruzzella V, Papa S, Smeitink JA | title = Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I | journal = Journal of Inherited Metabolic Disease | volume = 26 | issue = 8 | pages = 813–5 | year = 2004 | pmid = 14765537 | doi = 10.1023/B:BOLI.0000010003.14113.af }}
* {{cite journal | vauthors = Papa S, Petruzzella V, Scacco S, Vergari R, Panelli D, Tamborra R, Corsi P, Picciariello M, Lambo R, Bertini E, Santorelli FM | title = Respiratory complex I in brain development and genetic disease | journal = Neurochemical Research | volume = 29 | issue = 3 | pages = 547–60 | date = Mar 2004 | pmid = 15038602 | doi = 10.1023/B:NERE.0000014825.42365.16 }}
* {{cite journal | vauthors = Papa S, Petruzzella V, Scacco S, Vergari R, Panelli D, Tamborra R, Corsi P, Picciariello M, Lambo R, Bertini E, Santorelli FM | title = Respiratory complex I in brain development and genetic disease | journal = Neurochemical Research | volume = 29 | issue = 3 | pages = 547–60 | date = March 2004 | pmid = 15038602 | doi = 10.1023/B:NERE.0000014825.42365.16 }}
* {{cite journal | vauthors = Petruzzella V, Panelli D, Torraco A, Stella A, Papa S | title = Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants | journal = FEBS Letters | volume = 579 | issue = 17 | pages = 3770–6 | date = Jul 2005 | pmid = 15975579 | doi = 10.1016/j.febslet.2005.05.035 }}
* {{cite journal | vauthors = Petruzzella V, Panelli D, Torraco A, Stella A, Papa S | title = Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants | journal = FEBS Letters | volume = 579 | issue = 17 | pages = 3770–6 | date = July 2005 | pmid = 15975579 | doi = 10.1016/j.febslet.2005.05.035 }}
* {{cite journal | vauthors = Tao WA, Wollscheid B, O'Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L, Aebersold R | title = Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry | journal = Nature Methods | volume = 2 | issue = 8 | pages = 591–8 | date = Aug 2005 | pmid = 16094384 | doi = 10.1038/nmeth776 }}
* {{cite journal | vauthors = Tao WA, Wollscheid B, O'Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L, Aebersold R | title = Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry | journal = Nature Methods | volume = 2 | issue = 8 | pages = 591–8 | date = August 2005 | pmid = 16094384 | doi = 10.1038/nmeth776 }}
{{refend}}
{{refend}}
{{NLM content}}
{{Portal bar|Mitochondria|Gene Wiki|border=no}}


[[Category:Human proteins]]
[[Category:Human proteins]]

Latest revision as of 20:56, 28 August 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial (NDUFS4) also known as NADH-ubiquinone oxidoreductase 18 kDa subunit is an enzyme that in humans is encoded by the NDUFS4 gene.[1][2] This gene encodes an nuclear-encoded accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I, or NADH:ubiquinone oxidoreductase). Complex I removes electrons from NADH and passes them to the electron acceptor ubiquinone. Mutations in this gene can cause mitochondrial complex I deficiencies such as Leigh syndrome.[3]

Structure

NDUFS4 is located on the q arm of chromosome 5 in position 11.2 and has 8 exons.[4] The NDUFS4 gene produces a 20.1 kDa protein composed of 175 amino acids.[5][6] NDUFS4, the protein encoded by this gene, is a member of the complex I NDUFS4 subunit family. It is a peripheral membrane protein located on the matrix side of the inner mitochondrial membrane. NDUFS4 is a component of the iron-sulfur (IP) fragment of the enzyme and contains a transit peptide domain, 4 turns, 6 beta strands, and 4 alpha helixes.[7][8] Alternative splicing results in multiple transcript variants.[3]

Function

Complex I, or NADH:ubiquinone oxidoreductase, the first multisubunit enzyme complex of the mitochondrial respiratory chain, plays a vital role in cellular ATP production, the primary source of energy for many crucial processes in living cells. It removes electrons from NADH and passes them by a series of different protein-coupled redox centers to the electron acceptor ubiquinone. In well-coupled mitochondria, the electron flux leads to ATP generation via the building of a proton gradient across the inner membrane. Complex I is composed of at least 41 subunits, of which 7 are encoded by the mitochondrial genome (ND1-6, ND4L) and the remainder by nuclear genes.[1][3]

Clinical significance

Mutations in the NDUFS4 gene are associated with Mitochondrial Complex I Deficiency, which is autosomal recessive. This deficiency is the most common enzymatic defect of the oxidative phosphorylation disorders.[9][10] Mitochondrial complex I deficiency shows extreme genetic heterogeneity and can be caused by mutation in nuclear-encoded genes or in mitochondrial-encoded genes. There are no obvious genotype-phenotype correlations, and inference of the underlying basis from the clinical or biochemical presentation is difficult, if not impossible.[11] However, the majority of cases are caused by mutations in nuclear-encoded genes.[12][13] It causes a wide range of clinical disorders, ranging from lethal neonatal disease to adult-onset neurodegenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, nonspecific encephalopathy, hypertrophic cardiomyopathy, myopathy, liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some forms of Parkinson disease.[14] Complex I deficiency with autosomal recessive inheritance results from mutation in nuclear-encoded subunit genes, including NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS6, NDUFS7, NDUFS8, NDUFA2, NDUFA11, NDUFAF3, NDUFAF10, NDUFB3, NDUFB9, ACAD9, FOXRED1, and MTFMT.

Interactions

NDUFS4 has been shown to have 58 binary protein-protein interactions including 57 co-complex interactions. NDUFS4 appears to interact with UBE2G2.[15]

References

  1. 1.0 1.1 van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J (February 1998). "Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit". American Journal of Human Genetics. 62 (2): 262–8. doi:10.1086/301716. PMC 1376892. PMID 9463323.
  2. Emahazion T, Beskow A, Gyllensten U, Brookes AJ (Nov 1998). "Intron based radiation hybrid mapping of 15 complex I genes of the human electron transport chain". Cytogenetics and Cell Genetics. 82 (1–2): 115–9. doi:10.1159/000015082. PMID 9763677.
  3. 3.0 3.1 3.2 "Entrez Gene: NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase)". This article incorporates text from this source, which is in the public domain.
  4. "Entrez Gene: Cytochrome c oxidase assembly factor 7 (putative)". Retrieved 2018-08-08. This article incorporates text from this source, which is in the public domain.
  5. Yao, Daniel. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". amino.heartproteome.org. Retrieved 2018-08-28.
  6. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  7. "NDUFS4 - NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial precursor - Homo sapiens (Human) - NDUFS4 gene & protein". www.uniprot.org. Retrieved 2018-08-28.File:CC-BY-icon-80x15.png This article incorporates text available under the CC BY 4.0 license.
  8. "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
  9. Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR (September 2004). "NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency". The Journal of Clinical Investigation. 114 (6): 837–45. doi:10.1172/JCI20683. PMC 516258. PMID 15372108.
  10. McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, Fletcher JM, Dixon JW, Collins FA, Turnbull DM, Taylor RW, Thorburn DR (January 2004). "De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency". Annals of Neurology. 55 (1): 58–64. doi:10.1002/ana.10787. PMID 14705112.
  11. Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, Strecker V, Graf E, Mayr JA, Herberg U, Hennermann JB, Klopstock T, Kuhn KA, Ahting U, Sperl W, Wilichowski E, Hoffmann GF, Tesarova M, Hansikova H, Zeman J, Plecko B, Zeviani M, Wittig I, Strom TM, Schuelke M, Freisinger P, Meitinger T, Prokisch H (April 2012). "Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing". Journal of Medical Genetics. 49 (4): 277–83. doi:10.1136/jmedgenet-2012-100846. PMID 22499348.
  12. Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP (2000). "Isolated complex I deficiency in children: clinical, biochemical and genetic aspects". Human Mutation. 15 (2): 123–34. doi:10.1002/(SICI)1098-1004(200002)15:2<123::AID-HUMU1>3.0.CO;2-P. PMID 10649489.
  13. Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA (2001). "Respiratory chain complex I deficiency". American Journal of Medical Genetics. 106 (1): 37–45. doi:10.1002/ajmg.1397. PMID 11579423.
  14. Robinson BH (May 1998). "Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect". Biochimica et Biophysica Acta. 1364 (2): 271–86. doi:10.1016/s0005-2728(98)00033-4. PMID 9593934.
  15. "58 binary interactions found for search term NDUFS4". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-08-28.

Further reading

  • Leshinsky-Silver E, Lebre AS, Minai L, Saada A, Steffann J, Cohen S, Rötig A, Munnich A, Lev D, Lerman-Sagie T (July 2009). "NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement". Molecular Genetics and Metabolism. 97 (3): 185–9. doi:10.1016/j.ymgme.2009.03.002. PMID 19364667.
  • Papa S, Sardanelli AM, Scacco S, Petruzzella V, Technikova-Dobrova Z, Vergari R, Signorile A (February 2002). "The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade". Journal of Bioenergetics and Biomembranes. 34 (1): 1–10. doi:10.1023/A:1013863018115. PMID 11860175.
  • Pilkington SJ, Skehel JM, Gennis RB, Walker JE (February 1991). "Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase". Biochemistry. 30 (8): 2166–75. doi:10.1021/bi00222a021. PMID 1900194.
  • Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM, Smeitink JA (December 1998). "cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed". Biochemical and Biophysical Research Communications. 253 (2): 415–22. doi:10.1006/bbrc.1998.9786. PMID 9878551.
  • Triepels RH, Hanson BJ, van den Heuvel LP, Sundell L, Marusich MF, Smeitink JA, Capaldi RA (March 2001). "Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns". The Journal of Biological Chemistry. 276 (12): 8892–7. doi:10.1074/jbc.M009903200. PMID 11112787.
  • Papa S, Scacco S, Sardanelli AM, Vergari R, Papa F, Budde S, van den Heuvel L, Smeitink J (February 2001). "Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome". FEBS Letters. 489 (2–3): 259–62. doi:10.1016/S0014-5793(00)02334-6. PMID 11165261.
  • Petruzzella V, Vergari R, Puzziferri I, Boffoli D, Lamantea E, Zeviani M, Papa S (March 2001). "A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome". Human Molecular Genetics. 10 (5): 529–35. doi:10.1093/hmg/10.5.529. PMID 11181577.
  • Roef MJ, Reijngoud DJ, Jeneson JA, Berger R, de Meer K (April 2002). "Resting oxygen consumption and in vivo ADP are increased in myopathy due to complex I deficiency". Neurology. 58 (7): 1088–93. doi:10.1212/wnl.58.7.1088. PMID 11940698.
  • Lee BH, Lee H, Xiong L, Zhu JK (June 2002). "A mitochondrial complex I defect impairs cold-regulated nuclear gene expression". The Plant Cell. 14 (6): 1235–51. doi:10.1105/tpc.010433. PMC 150777. PMID 12084824.
  • Papa S (September 2002). "The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade". Biochimica et Biophysica Acta. 1555 (1–3): 147–53. doi:10.1016/S0005-2728(02)00270-0. PMID 12206907.
  • Bénit P, Steffann J, Lebon S, Chretien D, Kadhom N, de Lonlay P, Goldenberg A, Dumez Y, Dommergues M, Rustin P, Munnich A, Rötig A (May 2003). "Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome". Human Genetics. 112 (5–6): 563–6. doi:10.1007/s00439-002-0884-2. PMID 12616398.
  • Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den Heuvel LP, Smeitink JA, Papa S (November 2003). "Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex". The Journal of Biological Chemistry. 278 (45): 44161–7. doi:10.1074/jbc.M307615200. PMID 12944388.
  • Budde SM, van den Heuvel LP, Smeets RJ, Skladal D, Mayr JA, Boelen C, Petruzzella V, Papa S, Smeitink JA (2004). "Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I". Journal of Inherited Metabolic Disease. 26 (8): 813–5. doi:10.1023/B:BOLI.0000010003.14113.af. PMID 14765537.
  • Papa S, Petruzzella V, Scacco S, Vergari R, Panelli D, Tamborra R, Corsi P, Picciariello M, Lambo R, Bertini E, Santorelli FM (March 2004). "Respiratory complex I in brain development and genetic disease". Neurochemical Research. 29 (3): 547–60. doi:10.1023/B:NERE.0000014825.42365.16. PMID 15038602.
  • Petruzzella V, Panelli D, Torraco A, Stella A, Papa S (July 2005). "Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants". FEBS Letters. 579 (17): 3770–6. doi:10.1016/j.febslet.2005.05.035. PMID 15975579.
  • Tao WA, Wollscheid B, O'Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L, Aebersold R (August 2005). "Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry". Nature Methods. 2 (8): 591–8. doi:10.1038/nmeth776. PMID 16094384.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.