Adrenocortical carcinoma pathophysiology: Difference between revisions

Jump to navigation Jump to search
 
(7 intermediate revisions by one other user not shown)
Line 4: Line 4:


==Overview==
==Overview==
ACCs are typically large [[tumors]] upon clinical presentation, often measuring more than 6 cm in diameter. They are bilateral in 2% to 10% of cases. [[Genetic]] basis of ACC depends on [[Genomics|genomic]] aberrations that contribute to [[neoplastic]] transformation of [[adrenocortical]] [[Cells (biology)|cells]] such as [[Gene mutation|gene mutations,]] [[Chromosomal aberration|chromosomal aberrations]], and [[Epigenetics|epigenetic]] changes. [[Intracellular signaling]] can occur via three pathways: [[IGF|IGF]] pathway, WNT signaling pathway,  and [[Vascular endothelial growth factor]] pathway. On [[gross pathology]], a large tan-yellow surface with areas of [[hemorrhage]] and [[necrosis]] is a characteristic finding of adrenocortical carcinoma. On [[microscopic]] [[histopathological]] analysis, sheets of atypical cells with some resemblance to the cells of the normal [[adrenal cortex]] are a characteristic finding of adrenocortical carcinoma. ACC may be associated with other [[neoplastic]] [[syndromes]] such as [[Lynch syndrome]], [[Beckwith-Wiedemann syndrome]] ([[Beckwith-Wiedemann syndrome|BWS]]), [[Carney complex]], and [[Neurofibromatosis type I|Neurofibromatosis type 1]].
ACCs are typically large [[tumors]] upon clinical presentation, often measuring more than 6 cm in diameter. They are bilateral in 2% to 10% of cases. [[Genetic]] basis of ACC depends on [[Genomics|genomic]] aberrations that contribute to [[neoplastic]] transformation of [[adrenocortical]] [[Cells (biology)|cells]] such as [[Gene mutation|gene mutations,]] [[Chromosomal aberration|chromosomal aberrations]], and [[Epigenetics|epigenetic]] changes. [[Intracellular signaling]] can occur via three pathways: [[IGF|IGF]] pathway, WNT signaling pathway,  and [[Vascular endothelial growth factor]] pathway. On [[gross pathology]], a large tan-yellow surface with areas of [[hemorrhage]] and [[necrosis]] is a characteristic finding of adrenocortical carcinoma. On [[microscopic]] [[histopathological]] analysis, sheets of atypical cells with some resemblance to the cells of the normal [[adrenal cortex]] are a characteristic finding of adrenocortical carcinoma. ACC may be associated with other [[neoplastic]] [[syndromes]] such as [[Lynch syndrome]], [[Beckwith-Wiedemann syndrome]] ([[Beckwith-Wiedemann syndrome|BWS]]), [[Carney complex]], and [[Neurofibromatosis type I|Neurofibromatosis type1]].


==Pathophysiology==
==Pathophysiology==
Line 12: Line 12:
* [[Inferior vena cava]] [[invasion]] has been reported in 9% to 19% of cases at presentation.<ref name="pmid21606258">{{cite journal| author=Bharwani N, Rockall AG, Sahdev A, Gueorguiev M, Drake W, Grossman AB et al.| title=Adrenocortical carcinoma: the range of appearances on CT and MRI. | journal=AJR Am J Roentgenol | year= 2011 | volume= 196 | issue= 6 | pages= W706-14 | pmid=21606258 | doi=10.2214/AJR.10.5540 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21606258  }}</ref>
* [[Inferior vena cava]] [[invasion]] has been reported in 9% to 19% of cases at presentation.<ref name="pmid21606258">{{cite journal| author=Bharwani N, Rockall AG, Sahdev A, Gueorguiev M, Drake W, Grossman AB et al.| title=Adrenocortical carcinoma: the range of appearances on CT and MRI. | journal=AJR Am J Roentgenol | year= 2011 | volume= 196 | issue= 6 | pages= W706-14 | pmid=21606258 | doi=10.2214/AJR.10.5540 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21606258  }}</ref>
* Due to the presence of internal [[hemorrhage]], [[Necrosis|necrosis,]] and [[Calcification|calcifications]], these [[tumors]] tend to vary in appearance with frequent [[heterogeneous]] enhancement.
* Due to the presence of internal [[hemorrhage]], [[Necrosis|necrosis,]] and [[Calcification|calcifications]], these [[tumors]] tend to vary in appearance with frequent [[heterogeneous]] enhancement.
[[Metastasis|Spread]] can take several forms:<ref name="pmid19326954">{{cite journal| author=Dehner LP, Hill DA| title=Adrenal cortical neoplasms in children: why so many carcinomas and yet so many survivors? | journal=Pediatr Dev Pathol | year= 2009 | volume= 12 | issue= 4 | pages= 284-91 | pmid=19326954 | doi=10.2350/08-06-0489.1 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19326954  }}</ref>
[[Metastasis|Spread]] can take several forms: <ref name="pmid19326954">{{cite journal| author=Dehner LP, Hill DA| title=Adrenal cortical neoplasms in children: why so many carcinomas and yet so many survivors? | journal=Pediatr Dev Pathol | year= 2009 | volume= 12 | issue= 4 | pages= 284-91 | pmid=19326954 | doi=10.2350/08-06-0489.1 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19326954  }}</ref>
* Direct [[invasion]] of the [[tumor]] [[Capsule|capsule,]] [[invasion]] through the [[tumor]] [[capsule]] into extra-adrenal [[soft tissue]]
* Direct [[invasion]] of the [[tumor]] [[Capsule|capsule,]] [[invasion]] through the [[tumor]] [[capsule]] into extra-adrenal [[soft tissue]].
* Direct [[invasion]] of [[lymphatic vessels]] in and around the [[capsule]] and nearby [[blood vessels]]. [[Metastatic]] deposits are largely similar to the [[primary tumor]]
* Direct [[invasion]] of [[lymphatic vessels]] in and around the [[capsule]] and nearby [[blood vessels]]. [[Metastatic]] deposits are largely similar to the [[primary tumor]].
ACCs can be graded into low- and high-grade [[carcinoma]] groups based on their mitotic rates ( >20 [[mitoses]] per 50 high-power fields or <20 [[mitoses]] per 50 high-power fields)
ACCs can be graded into low and high-grade [[carcinoma]] groups based on their mitotic rates ( >20 [[mitoses]] per 50 high-power fields or <20 [[mitoses]] per 50 high-power fields)
* The mitotic rate is closely associated with the patient outcome.
* The mitotic rate is closely associated with the patient outcome.
* ACCs in children behave in a more indolent fashion compared with the adult, that is why there are so many [[pediatric]] ACCs but few pediatric deaths.<ref name="pmid3697922">{{cite journal| author=Cagle PT, Hough AJ, Pysher TJ, Page DL, Johnson EH, Kirkland RT et al.| title=Comparison of adrenal cortical tumors in children and adults. | journal=Cancer | year= 1986 | volume= 57 | issue= 11 | pages= 2235-7 | pmid=3697922 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3697922  }}</ref>
* ACCs in children behave in a more indolent fashion compared with the adult, that is why there are so many [[pediatric]] ACCs but few pediatric deaths.<ref name="pmid3697922">{{cite journal| author=Cagle PT, Hough AJ, Pysher TJ, Page DL, Johnson EH, Kirkland RT et al.| title=Comparison of adrenal cortical tumors in children and adults. | journal=Cancer | year= 1986 | volume= 57 | issue= 11 | pages= 2235-7 | pmid=3697922 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3697922  }}</ref>
Line 24: Line 24:
'''''1. [[Clone (cell biology)|Clonality]]'''''  
'''''1. [[Clone (cell biology)|Clonality]]'''''  
* ACCs originate from [[Monoclonal|monoclonal cell]] populations, suggesting that [[mutation]] events lead to [[Clonal selection|clonal expansion]] and ultimate progression to [[cancer]].<ref name="pmid7915195">{{cite journal| author=Beuschlein F, Reincke M, Karl M, Travis WD, Jaursch-Hancke C, Abdelhamid S et al.| title=Clonal composition of human adrenocortical neoplasms. | journal=Cancer Res | year= 1994 | volume= 54 | issue= 18 | pages= 4927-32 | pmid=7915195 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7915195  }}</ref>  
* ACCs originate from [[Monoclonal|monoclonal cell]] populations, suggesting that [[mutation]] events lead to [[Clonal selection|clonal expansion]] and ultimate progression to [[cancer]].<ref name="pmid7915195">{{cite journal| author=Beuschlein F, Reincke M, Karl M, Travis WD, Jaursch-Hancke C, Abdelhamid S et al.| title=Clonal composition of human adrenocortical neoplasms. | journal=Cancer Res | year= 1994 | volume= 54 | issue= 18 | pages= 4927-32 | pmid=7915195 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7915195  }}</ref>  
* [[Flow cytometry]] revealed [[aneuploidy]] in ACC. [[aneuploidy]] was observed in 75% of the ACCs.<ref name="pmid7910530">{{cite journal| author=Gicquel C, Leblond-Francillard M, Bertagna X, Louvel A, Chapuis Y, Luton JP et al.| title=Clonal analysis of human adrenocortical carcinomas and secreting adenomas. | journal=Clin Endocrinol (Oxf) | year= 1994 | volume= 40 | issue= 4 | pages= 465-77 | pmid=7910530 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7910530  }}</ref>
* [[Flow cytometry|Flowcytometry]] revealed [[aneuploidy]] in ACC. [[aneuploidy]] was observed in 75% of the ACCs.<ref name="pmid7910530">{{cite journal| author=Gicquel C, Leblond-Francillard M, Bertagna X, Louvel A, Chapuis Y, Luton JP et al.| title=Clonal analysis of human adrenocortical carcinomas and secreting adenomas. | journal=Clin Endocrinol (Oxf) | year= 1994 | volume= 40 | issue= 4 | pages= 465-77 | pmid=7910530 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7910530  }}</ref>
* Assessment of [[aneuploidy]] with [[histopathological]] criteria in 7 of 9 [[Adrenal tumor|adrenal tumors]] revealed a high correlation with Weiss score >3 (indicative of [[malignancy]]).<ref name="pmid3617290">{{cite journal| author=Amberson JB, Vaughan ED, Gray GF, Naus GJ| title=Flow cytometric determination of nuclear DNA content in benign adrenal pheochromocytomas. | journal=Urology | year= 1987 | volume= 30 | issue= 2 | pages= 102-4 | pmid=3617290 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3617290  }}</ref>  
* Assessment of [[aneuploidy]] with [[histopathological]] criteria in 7 of 9 [[Adrenal tumor|adrenal tumors]] revealed a high correlation with Weiss score >3 (indicative of [[malignancy]]).<ref name="pmid3617290">{{cite journal| author=Amberson JB, Vaughan ED, Gray GF, Naus GJ| title=Flow cytometric determination of nuclear DNA content in benign adrenal pheochromocytomas. | journal=Urology | year= 1987 | volume= 30 | issue= 2 | pages= 102-4 | pmid=3617290 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3617290  }}</ref>  
* No significant difference in overall survival was observed in patients with ACC exhibiting [[aneuploidy]] vs patients with ACC exhibiting [[Diploids|diploid]] [[Neoplasm|neoplasms]].<ref name="pmid2403197">{{cite journal| author=Cibas ES, Medeiros LJ, Weinberg DS, Gelb AB, Weiss LM| title=Cellular DNA profiles of benign and malignant adrenocortical tumors. | journal=Am J Surg Pathol | year= 1990 | volume= 14 | issue= 10 | pages= 948-55 | pmid=2403197 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2403197  }}</ref>
* No significant difference in overall survival was observed in patients with ACC exhibiting [[aneuploidy]] vs patients with ACC exhibiting [[Diploids|diploid]] [[Neoplasm|neoplasms]].<ref name="pmid2403197">{{cite journal| author=Cibas ES, Medeiros LJ, Weinberg DS, Gelb AB, Weiss LM| title=Cellular DNA profiles of benign and malignant adrenocortical tumors. | journal=Am J Surg Pathol | year= 1990 | volume= 14 | issue= 10 | pages= 948-55 | pmid=2403197 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2403197  }}</ref>
Line 52: Line 52:


* ''[[TP53 (gene)|TP53]]'' located on 17p13 is the most commonly mutated [[gene]] in ACC, present in at least one-third of ACCs.<ref name="pmid22504887">{{cite journal| author=Jain M, Rechache N, Kebebew E| title=Molecular markers of adrenocortical tumors. | journal=J Surg Oncol | year= 2012 | volume= 106 | issue= 5 | pages= 549-56 | pmid=22504887 | doi=10.1002/jso.23119 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22504887  }}</ref>
* ''[[TP53 (gene)|TP53]]'' located on 17p13 is the most commonly mutated [[gene]] in ACC, present in at least one-third of ACCs.<ref name="pmid22504887">{{cite journal| author=Jain M, Rechache N, Kebebew E| title=Molecular markers of adrenocortical tumors. | journal=J Surg Oncol | year= 2012 | volume= 106 | issue= 5 | pages= 549-56 | pmid=22504887 | doi=10.1002/jso.23119 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22504887  }}</ref>
* LOH in the gene encoding [[P16INK4a|p16ink]]/ [[p14arf]], ''[[CDKN2A]]'' is observed in a subset of ACCs. The tumor suppressor function of this [[gene]] has been established in multiple cancers. LOH of 11q13 have been identified in 83% of samples.<ref name="pmid10022445">{{cite journal| author=Kjellman M, Roshani L, Teh BT, Kallioniemi OP, Höög A, Gray S et al.| title=Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. | journal=J Clin Endocrinol Metab | year= 1999 | volume= 84 | issue= 2 | pages= 730-5 | pmid=10022445 | doi=10.1210/jcem.84.2.5506 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10022445  }}</ref>
* LOH in the gene encoding [[P16INK4a|p16ink]]/ [[p14arf]], ''[[CDKN2A]]'' is observed in a subset of ACCs. The tumor suppressor function of this [[gene]] has been established in multiple cancers. LOH of 11q13 has been identified in 83% of samples.<ref name="pmid10022445">{{cite journal| author=Kjellman M, Roshani L, Teh BT, Kallioniemi OP, Höög A, Gray S et al.| title=Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. | journal=J Clin Endocrinol Metab | year= 1999 | volume= 84 | issue= 2 | pages= 730-5 | pmid=10022445 | doi=10.1210/jcem.84.2.5506 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10022445  }}</ref>
* ''[[MEN1]]'' [[somatic]] [[mutations]] are unusual in sporadic ACC.<ref name="pmid17854394">{{cite journal| author=Tadjine M, Lampron A, Ouadi L, Bourdeau I| title=Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. | journal=Clin Endocrinol (Oxf) | year= 2008 | volume= 68 | issue= 2 | pages= 264-70 | pmid=17854394 | doi=10.1111/j.1365-2265.2007.03033.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17854394  }}</ref>  
* ''[[MEN1]]'' [[somatic]] [[mutations]] are unusual in sporadic ACC.<ref name="pmid17854394">{{cite journal| author=Tadjine M, Lampron A, Ouadi L, Bourdeau I| title=Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. | journal=Clin Endocrinol (Oxf) | year= 2008 | volume= 68 | issue= 2 | pages= 264-70 | pmid=17854394 | doi=10.1111/j.1365-2265.2007.03033.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17854394  }}</ref>  
* The canonical [[Wnt signaling pathway|Wnt pathway]], the [[Catenin|catenin gene]], and ''CTNNB1'' have been identified as activating [[point mutations]] in over 25% of both ACAs and ACCs in children and adults.<ref name="pmid18647815">{{cite journal| author=Gaujoux S, Tissier F, Groussin L, Libé R, Ragazzon B, Launay P et al.| title=Wnt/beta-catenin and 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. | journal=J Clin Endocrinol Metab | year= 2008 | volume= 93 | issue= 10 | pages= 4135-40 | pmid=18647815 | doi=10.1210/jc.2008-0631 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18647815  }}</ref>
* The canonical [[Wnt signaling pathway|Wnt pathway]], the [[Catenin|catenin gene]], and ''CTNNB1'' have been identified as activating [[point mutations]] in over 25% of both ACAs and ACCs in children and adults.<ref name="pmid18647815">{{cite journal| author=Gaujoux S, Tissier F, Groussin L, Libé R, Ragazzon B, Launay P et al.| title=Wnt/beta-catenin and 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. | journal=J Clin Endocrinol Metab | year= 2008 | volume= 93 | issue= 10 | pages= 4135-40 | pmid=18647815 | doi=10.1210/jc.2008-0631 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18647815  }}</ref>
Line 59: Line 59:
* [[Comparative genomic hybridization]]([[Comparative genomic hybridization|CGH]]) can identify structural [[chromosomal]] abnormalities within ACCs.<ref name="pmid23093492">{{cite journal| author=Barreau O, Assié G, Wilmot-Roussel H, Ragazzon B, Baudry C, Perlemoine K et al.| title=Identification of a CpG island methylator phenotype in adrenocortical carcinomas. | journal=J Clin Endocrinol Metab | year= 2013 | volume= 98 | issue= 1 | pages= E174-84 | pmid=23093492 | doi=10.1210/jc.2012-2993 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23093492  }}</ref>
* [[Comparative genomic hybridization]]([[Comparative genomic hybridization|CGH]]) can identify structural [[chromosomal]] abnormalities within ACCs.<ref name="pmid23093492">{{cite journal| author=Barreau O, Assié G, Wilmot-Roussel H, Ragazzon B, Baudry C, Perlemoine K et al.| title=Identification of a CpG island methylator phenotype in adrenocortical carcinomas. | journal=J Clin Endocrinol Metab | year= 2013 | volume= 98 | issue= 1 | pages= E174-84 | pmid=23093492 | doi=10.1210/jc.2012-2993 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23093492  }}</ref>


* ACCs showed complex [[chromosomal]] alterations. ACCs contained multiple chromosomal gains or losses with a mean of 10 events.
* ACCs showed complex [[chromosomal]] alterations.  
* ACCs contained multiple chromosomal gains or losses with a mean of 10 events.


* The newest study confirmed increased alterations in ACC (44%) compared with [[Adrenocortical adenoma|ACAs]] (10%).
* The newest study confirmed increased alterations in ACC (44%) compared with [[Adrenocortical adenoma|ACAs]] (10%).
Line 65: Line 66:
* In ACCs, the frequently observed [[chromosomal]] gains at 5, 7, 12, 16, 19, and 20 and losses at 13 and 22 were confirmed.  
* In ACCs, the frequently observed [[chromosomal]] gains at 5, 7, 12, 16, 19, and 20 and losses at 13 and 22 were confirmed.  


* In these regions, the following genes with potential carcinogenic potential were found
* In these regions, the following genes with potential carcinogenic potential were found:
** [[Fibroblast growth factor|Fibroblast growth factor 4]] (''[[FGF4]]'')  
** [[Fibroblast growth factor|Fibroblast growth factor 4]] (''[[FGF4]]''),
** [[cyclin-dependent kinase 4]] (''[[CDK4]]'')  
** [[cyclin-dependent kinase 4]] (''[[CDK4]]''),
** [[cyclin E1]] ([[CCNE1|''CCNE1'')]]   
** [[cyclin E1]] ([[CCNE1|''CCNE1'')]].    


* The study confirmed the diagnostic utility of 6 [[loci]] (5q, 7p, 11p, 13q, 16q, and 22q) in the [[differentiation]] of [[Adrenocortical adenoma|ACA]] and ACC.
* The study confirmed the diagnostic utility of 6 [[loci]] (5q, 7p, 11p, 13q, 16q, and 22q) in the [[differentiation]] of [[Adrenocortical adenoma|ACA]] and ACC.
Line 93: Line 94:


* The pathway is divided into 3 diverging signaling cascades dependent on signal conduction through:
* The pathway is divided into 3 diverging signaling cascades dependent on signal conduction through:
** [[Catenin]] (canonical pathway)
** [[Catenin]] (canonical pathway)
** [[Ras oncogene|Ras]] [[homolog]] [[gene]] family small [[GTPase]] (planar cell polarity pathway)
** [[Ras oncogene|Ras]] [[homolog]] [[gene]] family small [[GTPase]] (planar cell polarity pathway)
Line 123: Line 123:
* [[Sex hormones]] are synthesized in in the [[zona reticularis]]
* [[Sex hormones]] are synthesized in in the [[zona reticularis]]
* The secretion of [[cortisol]] is controlled by [[Hypothalamic pituitary adrenal axis|hypothalamic-pituitary axis]] by the following mechanism:<sup>[[Cushing's syndrome pathophysiology#cite note-pmid26004339-1|[1]]][[Cushing's syndrome pathophysiology#cite note-pmid25480800-2|[2]]]</sup>
* The secretion of [[cortisol]] is controlled by [[Hypothalamic pituitary adrenal axis|hypothalamic-pituitary axis]] by the following mechanism:<sup>[[Cushing's syndrome pathophysiology#cite note-pmid26004339-1|[1]]][[Cushing's syndrome pathophysiology#cite note-pmid25480800-2|[2]]]</sup>
** [[Paraventricular nucleus|Paraventricular nuclei]] in the [[hypothalamus]] releases [[Corticotropin-releasing hormone|corticotropin-releasing hormone]] ([[Corticotropin-releasing hormone|CRH]]).
** [[Paraventricular nucleus|Paraventricular nuclei]] in the [[hypothalamus]] release [[Corticotropin-releasing hormone|corticotropin-releasing hormone]] ([[Corticotropin-releasing hormone|CRH]]).
**[[Corticotropin-releasing hormone|CRH]] is transferred to [[anterior pituitary]] via the [[portal veins]].
**[[Corticotropin-releasing hormone|CRH]] is transferred to [[anterior pituitary]] via the [[portal veins]].
**[[CRH]] stimulates the activity of [[corticotrophs]]; cells that produce [[proopiomelanocortin]] ([[POMC]]) in the [[anterior pituitary]].
**[[CRH]] stimulates the activity of [[corticotrophs]]; cells that produce [[proopiomelanocortin]] ([[POMC]]) in the [[anterior pituitary]].
Line 151: Line 151:
On [[histopathology|microscopic examination]], the [[tumor]] usually displays sheets of atypical [[cells]] with some resemblance to the [[cells]] of the normal [[adrenal cortex]]. The presence of [[invasion]] and [[mitosis|mitotic activity]] helps [[differentiate|differentiating]] [[benign tumors]] from [[adrenocortical adenoma]]s.<ref name="Weidner's">{{cite book |author=Richard Cote, Saul Suster, Lawrence Weiss, Noel Weidner (Editor) |title=Modern Surgical Pathology (2 Volume Set) |publisher=W B Saunders |location=London |year= |pages= |isbn=0-7216-7253-1 |oclc= |doi=}}</ref>
On [[histopathology|microscopic examination]], the [[tumor]] usually displays sheets of atypical [[cells]] with some resemblance to the [[cells]] of the normal [[adrenal cortex]]. The presence of [[invasion]] and [[mitosis|mitotic activity]] helps [[differentiate|differentiating]] [[benign tumors]] from [[adrenocortical adenoma]]s.<ref name="Weidner's">{{cite book |author=Richard Cote, Saul Suster, Lawrence Weiss, Noel Weidner (Editor) |title=Modern Surgical Pathology (2 Volume Set) |publisher=W B Saunders |location=London |year= |pages= |isbn=0-7216-7253-1 |oclc= |doi=}}</ref>


'''The Weiss criteria''' is the most reliable [[histopathological]] scoring system differentiating ACC from [[adrenocortical adenoma]].  
'''The Weiss criteria''' are the most reliable [[histopathological]] scoring system differentiating ACC from [[adrenocortical adenoma]].  


ACC can be diagnosed by the presence of at least 3 of the 9 Weiss criteria:
ACC can be diagnosed by the presence of at least 3 of the 9 Weiss criteria:
Line 171: Line 171:
* [[Capsule|Capsular]] [[invasion]]
* [[Capsule|Capsular]] [[invasion]]


[[Image:800px-Adrenal_cortical_carcinoma_-_low_mag.jpg‎|Center|thumb|800x800px|Micrograph of an adrenocortical carcinoma (left of image - dark blue) and the adrenal cortex it arose from (right-top of image - pink/light blue). Benign adrenal medulla is present (right-middle of image - gray/blue). H&E stain. - Source: https://librepathology.org]]
[[Image:800px-Adrenal_cortical_carcinoma_-_low_mag.jpg‎|centre|thumb|800x800px|Micrograph of an adrenocortical carcinoma (left of image - dark blue) and the adrenal cortex it arose from (right-top of image - pink/light blue). Benign adrenal medulla is present (right-middle of image - gray/blue). H&E stain. - Source: https://librepathology.org]]
<br>
<br>
<br>
<br>
<br>
<br>


====Video====
====Video====

Latest revision as of 18:46, 30 October 2017

Adrenocortical carcinoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Adrenocortical carcinoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

MRI

CT

Ultrasound

Other Imaging Studies

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Radiation Therapy

Primary prevention

Secondary prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Study

Case #1

Adrenocortical carcinoma pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Adrenocortical carcinoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Adrenocortical carcinoma pathophysiology

CDC on Adrenocortical carcinoma pathophysiology

Adrenocortical carcinoma pathophysiology in the news

Blogs on Adrenocortical carcinoma pathophysiology

Hospitals Treating Adrenocortical carcinoma

Risk calculators and risk factors for Adrenocortical carcinoma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Raviteja Guddeti, M.B.B.S. [2] Shivali Marketkar, M.B.B.S. [3] Ahmad Al Maradni, M.D. [4] Mohammed Abdelwahed M.D[5]

Overview

ACCs are typically large tumors upon clinical presentation, often measuring more than 6 cm in diameter. They are bilateral in 2% to 10% of cases. Genetic basis of ACC depends on genomic aberrations that contribute to neoplastic transformation of adrenocortical cells such as gene mutations, chromosomal aberrations, and epigenetic changes. Intracellular signaling can occur via three pathways: IGF pathway, WNT signaling pathway, and Vascular endothelial growth factor pathway. On gross pathology, a large tan-yellow surface with areas of hemorrhage and necrosis is a characteristic finding of adrenocortical carcinoma. On microscopic histopathological analysis, sheets of atypical cells with some resemblance to the cells of the normal adrenal cortex are a characteristic finding of adrenocortical carcinoma. ACC may be associated with other neoplastic syndromes such as Lynch syndrome, Beckwith-Wiedemann syndrome (BWS), Carney complex, and Neurofibromatosis type1.

Pathophysiology

Spread can take several forms: [4]

ACCs can be graded into low and high-grade carcinoma groups based on their mitotic rates ( >20 mitoses per 50 high-power fields or <20 mitoses per 50 high-power fields)

  • The mitotic rate is closely associated with the patient outcome.
  • ACCs in children behave in a more indolent fashion compared with the adult, that is why there are so many pediatric ACCs but few pediatric deaths.[5]

Genetics

The genetic dissection of ACC has revealed genomic aberrations that contribute to neoplastic transformation of the adrenocortical cells:

1. Clonality

2. Gene expression arrays

  • Expression levels of BUB1B, PINK1, and DLG7 are identified in ACC.[12]

3. MicroRNAs

microRNA function, source: By Kelvinsong - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23311105

4. Gene mutations

  • TP53 located on 17p13 is the most commonly mutated gene in ACC, present in at least one-third of ACCs.[19]
  • LOH in the gene encoding p16ink/ p14arf, CDKN2A is observed in a subset of ACCs. The tumor suppressor function of this gene has been established in multiple cancers. LOH of 11q13 has been identified in 83% of samples.[20]
  • MEN1 somatic mutations are unusual in sporadic ACC.[21]
  • The canonical Wnt pathway, the catenin gene, and CTNNB1 have been identified as activating point mutations in over 25% of both ACAs and ACCs in children and adults.[22]
WNT pathwayssource: By Fred the OysteriThe source code of this SVG is valid.This vector graphics image was created with Adobe Illustrator., GFDL, https://commons.wikimedia.org/w/index.php?curid=36340188

5. Chromosomal aberrations

  • ACCs showed complex chromosomal alterations.
  • ACCs contained multiple chromosomal gains or losses with a mean of 10 events.
  • The newest study confirmed increased alterations in ACC (44%) compared with ACAs (10%).
  • In ACCs, the frequently observed chromosomal gains at 5, 7, 12, 16, 19, and 20 and losses at 13 and 22 were confirmed.
  • The study confirmed the diagnostic utility of 6 loci (5q, 7p, 11p, 13q, 16q, and 22q) in the differentiation of ACA and ACC.

6. Epigenetic changes

Cellular signaling pathway

1. IGF pathway

2. WNT signaling pathway

  • Initial alterations of the WNT/ catenin system/pathway were identified in FAP.[34]
  • Both nuclear catenin accumulation and activating CTNNB1 mutations are present in ACCs suggesting WNT activation to be a part of ACA tumorigenesis.

3. Vascular endothelial growth factor

VEGF signaling, source: By Mikael Häggström.When using this image in external works, it may be cited as:Häggström, Mikael (2014). "Medical gallery of Mikael Häggström 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.008. ISSN 2002-4436. Public Domain.orBy Mikael Häggström, used with permission. - [1]Interactions of VEGF ligands and VEGF receptors ResearchVEGF.com, retrieved on November, 13, 2009, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3475250

Hormones biosynthesis in adrenal cortex

source: By David Richfield (User:Slashme) and Mikael Häggström. Derived from previous version by Hoffmeier and Settersr.In external use, this diagram may be cited as:Häggström M, Richfield D (2014). "Diagram of the pathways of human steroidogenesis". Wikiversity Journal of Medicine 1 (1). DOI:10.15347/wjm/2014.005. ISSN 20018762. - Self-made using bkchem and inkscape, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6355511

Associated Conditions

Associated diseases with adrenocortical carcinoma are:

Gross Pathology

A large adrenal cortical carcinoma resected from a 27-year-old woman. The tumor measured 17 cm in diameter and invaded kidney and spleen which necessitated en bloc removal of these organs with the tumor. - By AFIP Atlas of Tumor Pathology - [1], Domena publiczna, https://commons.wikimedia.org/w/index.php?curid=6719487

Shown above is a large adrenal cortical carcinoma resected from a 27-year-old woman. The tumor measured 17 cm in diameter and invaded kidney and spleen which necessitated en bloc removal of these organs with the tumor. The patient had evidence of virilization.

Microscopic Pathology

On microscopic examination, the tumor usually displays sheets of atypical cells with some resemblance to the cells of the normal adrenal cortex. The presence of invasion and mitotic activity helps differentiating benign tumors from adrenocortical adenomas.[42]

The Weiss criteria are the most reliable histopathological scoring system differentiating ACC from adrenocortical adenoma.

ACC can be diagnosed by the presence of at least 3 of the 9 Weiss criteria:

Modified Weiss criteria (score of 3 or more suggests malignancy):

Micrograph of an adrenocortical carcinoma (left of image - dark blue) and the adrenal cortex it arose from (right-top of image - pink/light blue). Benign adrenal medulla is present (right-middle of image - gray/blue). H&E stain. - Source: https://librepathology.org







Video

Shown below is a video explaining the histology of adrenocortical carcinoma

{{#ev:youtube|7jMFENhPaOM}}

References

  1. Johnson PT, Horton KM, Fishman EK (2009). "Adrenal mass imaging with multidetector CT: pathologic conditions, pearls, and pitfalls". Radiographics. 29 (5): 1333–51. doi:10.1148/rg.295095027. PMID 19755599.
  2. Dunnick NR, Heaston D, Halvorsen R, Moore AV, Korobkin M (1982). "CT appearance of adrenal cortical carcinoma". J Comput Assist Tomogr. 6 (5): 978–82. PMID 7142516.
  3. Bharwani N, Rockall AG, Sahdev A, Gueorguiev M, Drake W, Grossman AB; et al. (2011). "Adrenocortical carcinoma: the range of appearances on CT and MRI". AJR Am J Roentgenol. 196 (6): W706–14. doi:10.2214/AJR.10.5540. PMID 21606258.
  4. Dehner LP, Hill DA (2009). "Adrenal cortical neoplasms in children: why so many carcinomas and yet so many survivors?". Pediatr Dev Pathol. 12 (4): 284–91. doi:10.2350/08-06-0489.1. PMID 19326954.
  5. Cagle PT, Hough AJ, Pysher TJ, Page DL, Johnson EH, Kirkland RT; et al. (1986). "Comparison of adrenal cortical tumors in children and adults". Cancer. 57 (11): 2235–7. PMID 3697922.
  6. Beuschlein F, Reincke M, Karl M, Travis WD, Jaursch-Hancke C, Abdelhamid S; et al. (1994). "Clonal composition of human adrenocortical neoplasms". Cancer Res. 54 (18): 4927–32. PMID 7915195.
  7. Gicquel C, Leblond-Francillard M, Bertagna X, Louvel A, Chapuis Y, Luton JP; et al. (1994). "Clonal analysis of human adrenocortical carcinomas and secreting adenomas". Clin Endocrinol (Oxf). 40 (4): 465–77. PMID 7910530.
  8. Amberson JB, Vaughan ED, Gray GF, Naus GJ (1987). "Flow cytometric determination of nuclear DNA content in benign adrenal pheochromocytomas". Urology. 30 (2): 102–4. PMID 3617290.
  9. Cibas ES, Medeiros LJ, Weinberg DS, Gelb AB, Weiss LM (1990). "Cellular DNA profiles of benign and malignant adrenocortical tumors". Am J Surg Pathol. 14 (10): 948–55. PMID 2403197.
  10. de Fraipont F, El Atifi M, Cherradi N, Le Moigne G, Defaye G, Houlgatte R; et al. (2005). "Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy". J Clin Endocrinol Metab. 90 (3): 1819–29. doi:10.1210/jc.2004-1075. PMID 15613424.
  11. Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M, Bauersfeld J; et al. (2009). "Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling". Clin Cancer Res. 15 (2): 668–76. doi:10.1158/1078-0432.CCR-08-1067. PMC 2629378. PMID 19147773.
  12. de Reyniès A, Assié G, Rickman DS, Tissier F, Groussin L, René-Corail F; et al. (2009). "Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival". J Clin Oncol. 27 (7): 1108–15. doi:10.1200/JCO.2008.18.5678. PMID 19139432.
  13. Czech B, Hannon GJ (2011). "Small RNA sorting: matchmaking for Argonautes". Nat Rev Genet. 12 (1): 19–31. doi:10.1038/nrg2916. PMC 3703915. PMID 21116305.
  14. Lujambio A, Lowe SW (2012). "The microcosmos of cancer". Nature. 482 (7385): 347–55. doi:10.1038/nature10888. PMC 3509753. PMID 22337054.
  15. Soon PS, Tacon LJ, Gill AJ, Bambach CP, Sywak MS, Campbell PR; et al. (2009). "miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer". Clin Cancer Res. 15 (24): 7684–7692. doi:10.1158/1078-0432.CCR-09-1587. PMID 19996210.
  16. 16.0 16.1 Tömböl Z, Szabó PM, Molnár V, Wiener Z, Tölgyesi G, Horányi J; et al. (2009). "Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis". Endocr Relat Cancer. 16 (3): 895–906. doi:10.1677/ERC-09-0096. PMID 19546168.
  17. Doghman M, El Wakil A, Cardinaud B, Thomas E, Wang J, Zhao W; et al. (2010). "Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors". Cancer Res. 70 (11): 4666–75. doi:10.1158/0008-5472.CAN-09-3970. PMC 2880211. PMID 20484036.
  18. Barzon L, Chilosi M, Fallo F, Martignoni G, Montagna L, Palù G; et al. (2001). "Molecular analysis of CDKN1C and TP53 in sporadic adrenal tumors". Eur J Endocrinol. 145 (2): 207–12. PMID 11454518.
  19. Jain M, Rechache N, Kebebew E (2012). "Molecular markers of adrenocortical tumors". J Surg Oncol. 106 (5): 549–56. doi:10.1002/jso.23119. PMID 22504887.
  20. Kjellman M, Roshani L, Teh BT, Kallioniemi OP, Höög A, Gray S; et al. (1999). "Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16". J Clin Endocrinol Metab. 84 (2): 730–5. doi:10.1210/jcem.84.2.5506. PMID 10022445.
  21. Tadjine M, Lampron A, Ouadi L, Bourdeau I (2008). "Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas". Clin Endocrinol (Oxf). 68 (2): 264–70. doi:10.1111/j.1365-2265.2007.03033.x. PMID 17854394.
  22. Gaujoux S, Tissier F, Groussin L, Libé R, Ragazzon B, Launay P; et al. (2008). "Wnt/beta-catenin and 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors". J Clin Endocrinol Metab. 93 (10): 4135–40. doi:10.1210/jc.2008-0631. PMID 18647815.
  23. Barreau O, Assié G, Wilmot-Roussel H, Ragazzon B, Baudry C, Perlemoine K; et al. (2013). "Identification of a CpG island methylator phenotype in adrenocortical carcinomas". J Clin Endocrinol Metab. 98 (1): E174–84. doi:10.1210/jc.2012-2993. PMID 23093492.
  24. Hofland J, Steenbergen J, Voorsluijs JM, Verbiest MM, de Krijger RR, Hofland LJ; et al. (2014). "Inhibin alpha-subunit (INHA) expression in adrenocortical cancer is linked to genetic and epigenetic INHA promoter variation". PLoS One. 9 (8): e104944. doi:10.1371/journal.pone.0104944. PMC 4128726. PMID 25111790.
  25. Voutilainen R, Miller WL (1987). "Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues". Proc Natl Acad Sci U S A. 84 (6): 1590–4. PMC 304481. PMID 3031644.
  26. Han VK, Lu F, Bassett N, Yang KP, Delhanty PJ, Challis JR (1992). "Insulin-like growth factor-II (IGF-II) messenger ribonucleic acid is expressed in steroidogenic cells of the developing ovine adrenal gland: evidence of an autocrine/paracrine role for IGF-II". Endocrinology. 131 (6): 3100–9. doi:10.1210/endo.131.6.1446644. PMID 1446644.
  27. Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE, Smith AL; et al. (2003). "Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis". Am J Pathol. 162 (2): 521–31. doi:10.1016/S0002-9440(10)63846-1. PMC 1851158. PMID 12547710.
  28. Gaston V, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H; et al. (2001). "Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome". Eur J Hum Genet. 9 (6): 409–18. doi:10.1038/sj.ejhg.5200649. PMID 11436121.
  29. Ilvesmäki V, Kahri AI, Miettinen PJ, Voutilainen R (1993). "Insulin-like growth factors (IGFs) and their receptors in adrenal tumors: high IGF-II expression in functional adrenocortical carcinomas". J Clin Endocrinol Metab. 77 (3): 852–8. doi:10.1210/jcem.77.3.8370710. PMID 8370710.
  30. Barlaskar FM, Spalding AC, Heaton JH, Kuick R, Kim AC, Thomas DG; et al. (2009). "Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma". J Clin Endocrinol Metab. 94 (1): 204–12. doi:10.1210/jc.2008-1456. PMC 2630877. PMID 18854392.
  31. Gicquel C, Bertagna X, Gaston V, Coste J, Louvel A, Baudin E; et al. (2001). "Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors". Cancer Res. 61 (18): 6762–7. PMID 11559548.
  32. Almeida MQ, Fragoso MC, Lotfi CF, Santos MG, Nishi MY, Costa MH; et al. (2008). "Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors". J Clin Endocrinol Metab. 93 (9): 3524–31. doi:10.1210/jc.2008-0065. PMID 18611974.
  33. Kim AC, Reuter AL, Zubair M, Else T, Serecky K, Bingham NC; et al. (2008). "Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex". Development. 135 (15): 2593–602. doi:10.1242/dev.021493. PMID 18599507.
  34. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB; et al. (1991). "Identification of FAP locus genes from chromosome 5q21". Science. 253 (5020): 661–5. PMID 1651562.
  35. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H; et al. (1991). "Identification and characterization of the familial adenomatous polyposis coli gene". Cell. 66 (3): 589–600. PMID 1651174.
  36. Chapman A, Durand J, Ouadi L, Bourdeau I (2011). "Identification of genetic alterations of AXIN2 gene in adrenocortical tumors". J Clin Endocrinol Metab. 96 (9): E1477–81. doi:10.1210/jc.2010-2987. PMID 21733995.
  37. Affara NI, Robertson FM (2004). "Vascular endothelial growth factor as a survival factor in tumor-associated angiogenesis". In Vivo. 18 (5): 525–42. PMID 15523889.
  38. de Fraipont F, El Atifi M, Gicquel C, Bertagna X, Chambaz EM, Feige JJ (2000). "Expression of the angiogenesis markers vascular endothelial growth factor-A, thrombospondin-1, and platelet-derived endothelial cell growth factor in human sporadic adrenocortical tumors: correlation with genotypic alterations". J Clin Endocrinol Metab. 85 (12): 4734–41. doi:10.1210/jcem.85.12.7012. PMID 11134136.
  39. Wortmann S, Quinkler M, Ritter C, Kroiss M, Johanssen S, Hahner S; et al. (2010). "Bevacizumab plus capecitabine as a salvage therapy in advanced adrenocortical carcinoma". Eur J Endocrinol. 162 (2): 349–56. doi:10.1530/EJE-09-0804. PMID 19903796.
  40. Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M, Bauersfeld J; et al. (2009). "Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling". Clin Cancer Res. 15 (2): 668–76. doi:10.1158/1078-0432.CCR-08-1067. PMC 2629378. PMID 19147773.
  41. Bagri A, Kouros-Mehr H, Leong KG, Plowman GD (2010). "Use of anti-VEGF adjuvant therapy in cancer: challenges and rationale". Trends Mol Med. 16 (3): 122–32. doi:10.1016/j.molmed.2010.01.004. PMID 20189876.
  42. Richard Cote, Saul Suster, Lawrence Weiss, Noel Weidner (Editor). Modern Surgical Pathology (2 Volume Set). London: W B Saunders. ISBN 0-7216-7253-1.

Template:WH Template:WS