BCR (gene): Difference between revisions

Jump to navigation Jump to search
m (task using AWB)
 
m (1 revision imported)
 
(One intermediate revision by one other user not shown)
Line 19: Line 19:
| CDD =  
| CDD =  
}}
}}
The '''breakpoint cluster region protein''' ('''BCR''') also known as '''renal carcinoma antigen NY-REN-26''' is a [[protein]] that in humans is encoded by the BCR [[gene]]. BCR is one of the two genes in the BCR-ABL complex, which is associated with the [[Philadelphia chromosome]]. Two transcript variants encoding different isoforms have been found for this gene.
The '''breakpoint cluster region protein''' ('''BCR''') also known as '''renal carcinoma antigen NY-REN-26''' is a [[protein]] that in humans is encoded by the ''BCR'' [[gene]]. ''BCR'' is one of the two genes in the ''BCR-ABL'' complex, which is associated with the [[Philadelphia chromosome]]. Two transcript variants encoding different isoforms have been found for this gene.


== Function ==
== Function ==


Although the BCR-[[ABL (gene)|ABL]] [[fusion protein]] has been extensively studied, the function of the normal BCR gene product is not clear. The protein has [[serine/threonine kinase]] activity and is a [[guanine nucleotide exchange factor]] for Rho family [[GTPase]]s including [[RHOA|RhoA]].<ref>{{Cite journal|last=Dubash|first=Adi D.|last2=Koetsier|first2=Jennifer L.|last3=Amargo|first3=Evangeline V.|last4=Najor|first4=Nicole A.|last5=Harmon|first5=Robert M.|last6=Green|first6=Kathleen J.|date=2013-08-19|title=The GEF Bcr activates RhoA/MAL signaling to promote keratinocyte differentiation via desmoglein-1|url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747303/|journal=The Journal of Cell Biology|volume=202|issue=4|pages=653–666|doi=10.1083/jcb.201304133|issn=0021-9525|pmc=3747303|pmid=23940119}}</ref><ref name="entrez">{{cite web | title = Entrez Gene: Breakpoint cluster region | url = https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=613 }}</ref>
Although the BCR-[[ABL (gene)|ABL]] [[fusion protein]] has been extensively studied, the function of the normal BCR gene product is not clear. The protein has [[serine/threonine kinase]] activity and is a [[guanine nucleotide exchange factor]] for Rho family [[GTPase]]s including [[RHOA|RhoA]].<ref>{{Cite journal|last=Dubash|first=Adi D.|last2=Koetsier|first2=Jennifer L.|last3=Amargo|first3=Evangeline V.|last4=Najor|first4=Nicole A.|last5=Harmon|first5=Robert M.|last6=Green|first6=Kathleen J.|date=2013-08-19|title=The GEF Bcr activates RhoA/MAL signaling to promote keratinocyte differentiation via desmoglein-1|journal=The Journal of Cell Biology|volume=202|issue=4|pages=653–666|doi=10.1083/jcb.201304133|issn=0021-9525|pmc=3747303|pmid=23940119}}</ref><ref name="entrez">{{cite web | title = Entrez Gene: Breakpoint cluster region | url = https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=613 }}</ref>


== Clinical significance ==
== Clinical significance ==


A reciprocal translocation between chromosomes 22 and 9 produces the Philadelphia chromosome, which is often found in patients with [[chronic myelogenous leukemia]]. The chromosome 22 breakpoint for this translocation is located within the BCR gene. The translocation produces a fusion protein that is encoded by sequence from both BCR and ABL, the gene at the chromosome 9 breakpoint.<ref>{{Cite web| title = Entrez Gene: BCR breakpoint cluster region| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=613| accessdate = }}</ref>
A reciprocal translocation between chromosomes 22 and 9 produces the Philadelphia chromosome, which is often found in patients with [[chronic myelogenous leukemia]]. The chromosome 22 breakpoint for this translocation is located within the ''BCR'' gene. The translocation produces a fusion protein that is encoded by sequence from both ''BCR'' and ''ABL'', the gene at the chromosome 9 breakpoint.<ref>{{Cite web| title = Entrez Gene: BCR breakpoint cluster region| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=613| accessdate = }}</ref>


== Structure ==
== Structure ==


The Bcr-Abl oncoprotein oligomerisation domain found at the [[N-terminus]] of BCR is essential for the [[oncogenic]]ity of the BCR-ABL fusion protein. The Bcr-Abl oncoprotein oligomerisation domain consists of a short N-terminal [[helix]] (alpha-1), a flexible [[turn (biochemistry)|loop]] and a long C-terminal helix (alpha-2). Together these form an N-shaped structure, with the loop allowing the two [[Alpha helix|helices]] to assume a parallel orientation. The monomeric [[protein domain|domains]] associate into a [[protein dimer|dimer]] through the formation of an [[Antiparallel (biochemistry)|antiparallel]] [[coiled coil]] between the alpha-2 helices and domain swapping of two alpha-1 helices, where one alpha-1 helix swings back and packs against the alpha-2 helix from the second [[monomer]]. Two [[protein dimer|dimers]] then associate into a [[tetramer]].<ref name="pmid11780146">{{cite journal | vauthors = Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS | title = Structure of the Bcr-Abl oncoprotein oligomerization domain | journal = Nat. Struct. Biol. | volume = 9 | issue = 2 | pages = 117–20  | date = February 2002 | pmid = 11780146 | doi = 10.1038/nsb747 }}</ref>
The BCR-ABL oncoprotein oligomerisation domain found at the [[N-terminus]] of BCR is essential for the [[oncogenic]]ity of the BCR-ABL fusion protein. The BCR-ABL oncoprotein oligomerisation domain consists of a short N-terminal [[helix]] (alpha-1), a flexible [[turn (biochemistry)|loop]] and a long C-terminal helix (alpha-2). Together these form an N-shaped structure, with the loop allowing the two [[Alpha helix|helices]] to assume a parallel orientation. The monomeric [[protein domain|domains]] associate into a [[protein dimer|dimer]] through the formation of an [[Antiparallel (biochemistry)|antiparallel]] [[coiled coil]] between the alpha-2 helices and domain swapping of two alpha-1 helices, where one alpha-1 helix swings back and packs against the alpha-2 helix from the second [[monomer]]. Two [[protein dimer|dimers]] then associate into a [[tetramer]].<ref name="pmid11780146">{{cite journal | vauthors = Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS | title = Structure of the Bcr-Abl oncoprotein oligomerization domain | journal = Nat. Struct. Biol. | volume = 9 | issue = 2 | pages = 117–20  | date = February 2002 | pmid = 11780146 | doi = 10.1038/nsb747 }}</ref>


== Interactions ==
== Interactions ==


BCR gene has been shown to [[Protein-protein interaction|interact]] with:
The BCR protein has been shown to [[Protein-protein interaction|interact]] with:
{{div col|colwidth=15em}}
{{div col|colwidth=15em}}
* [[Abl gene]],<ref name=pmid8112292/><ref name=pmid12543778>{{cite journal | vauthors = Ling X, Ma G, Sun T, Liu J, Arlinghaus RB | title = Bcr and Abl interaction: oncogenic activation of c-Abl by sequestering Bcr | journal = Cancer Res. | volume = 63 | issue = 2 | pages = 298–303  | date = January 2003 | pmid = 12543778 | doi =  }}</ref><ref name=pmid1712671>{{cite journal | vauthors = Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON | title = BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner | journal = Cell | volume = 66 | issue = 1 | pages = 161–71  | date = July 1991 | pmid = 1712671 | doi = 10.1016/0092-8674(91)90148-R }}</ref>
* [[Abl gene]],<ref name=pmid8112292/><ref name=pmid12543778>{{cite journal | vauthors = Ling X, Ma G, Sun T, Liu J, Arlinghaus RB | title = Bcr and Abl interaction: oncogenic activation of c-Abl by sequestering Bcr | journal = Cancer Res. | volume = 63 | issue = 2 | pages = 298–303  | date = January 2003 | pmid = 12543778 | doi =  }}</ref><ref name=pmid1712671>{{cite journal | vauthors = Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON | title = BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner | journal = Cell | volume = 66 | issue = 1 | pages = 161–71  | date = July 1991 | pmid = 1712671 | doi = 10.1016/0092-8674(91)90148-R }}</ref>
Line 72: Line 72:
{{InterPro content|IPR015123}}
{{InterPro content|IPR015123}}


[[Category:Protein domains]]
[[Category:Genes on human chromosome 22]]
[[Category:Protein kinases]]

Latest revision as of 12:23, 9 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human
Bcr-Abl oncoprotein oligomerisation domain
File:PDB 1k1f EBI.jpg
structure of the bcr-abl oncoprotein oligomerization domain
Identifiers
SymbolBcr-Abl_Oligo
PfamPF09036
InterProIPR015123

The breakpoint cluster region protein (BCR) also known as renal carcinoma antigen NY-REN-26 is a protein that in humans is encoded by the BCR gene. BCR is one of the two genes in the BCR-ABL complex, which is associated with the Philadelphia chromosome. Two transcript variants encoding different isoforms have been found for this gene.

Function

Although the BCR-ABL fusion protein has been extensively studied, the function of the normal BCR gene product is not clear. The protein has serine/threonine kinase activity and is a guanine nucleotide exchange factor for Rho family GTPases including RhoA.[1][2]

Clinical significance

A reciprocal translocation between chromosomes 22 and 9 produces the Philadelphia chromosome, which is often found in patients with chronic myelogenous leukemia. The chromosome 22 breakpoint for this translocation is located within the BCR gene. The translocation produces a fusion protein that is encoded by sequence from both BCR and ABL, the gene at the chromosome 9 breakpoint.[3]

Structure

The BCR-ABL oncoprotein oligomerisation domain found at the N-terminus of BCR is essential for the oncogenicity of the BCR-ABL fusion protein. The BCR-ABL oncoprotein oligomerisation domain consists of a short N-terminal helix (alpha-1), a flexible loop and a long C-terminal helix (alpha-2). Together these form an N-shaped structure, with the loop allowing the two helices to assume a parallel orientation. The monomeric domains associate into a dimer through the formation of an antiparallel coiled coil between the alpha-2 helices and domain swapping of two alpha-1 helices, where one alpha-1 helix swings back and packs against the alpha-2 helix from the second monomer. Two dimers then associate into a tetramer.[4]

Interactions

The BCR protein has been shown to interact with:

See also

References

  1. Dubash, Adi D.; Koetsier, Jennifer L.; Amargo, Evangeline V.; Najor, Nicole A.; Harmon, Robert M.; Green, Kathleen J. (2013-08-19). "The GEF Bcr activates RhoA/MAL signaling to promote keratinocyte differentiation via desmoglein-1". The Journal of Cell Biology. 202 (4): 653–666. doi:10.1083/jcb.201304133. ISSN 0021-9525. PMC 3747303. PMID 23940119.
  2. "Entrez Gene: Breakpoint cluster region".
  3. "Entrez Gene: BCR breakpoint cluster region".
  4. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS (February 2002). "Structure of the Bcr-Abl oncoprotein oligomerization domain". Nat. Struct. Biol. 9 (2): 117–20. doi:10.1038/nsb747. PMID 11780146.
  5. 5.0 5.1 5.2 Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T (February 1994). "Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway". EMBO J. 13 (4): 764–73. PMC 394874. PMID 8112292.
  6. Ling X, Ma G, Sun T, Liu J, Arlinghaus RB (January 2003). "Bcr and Abl interaction: oncogenic activation of c-Abl by sequestering Bcr". Cancer Res. 63 (2): 298–303. PMID 12543778.
  7. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (July 1991). "BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner". Cell. 66 (1): 161–71. doi:10.1016/0092-8674(91)90148-R. PMID 1712671.
  8. Hallek M, Danhauser-Riedl S, Herbst R, Warmuth M, Winkler A, Kolb HJ, Druker B, Griffin JD, Emmerich B, Ullrich A (July 1996). "Interaction of the receptor tyrosine kinase p145c-kit with the p210bcr/abl kinase in myeloid cells". Br. J. Haematol. 94 (1): 5–16. doi:10.1046/j.1365-2141.1996.6102053.x. PMID 8757502.
  9. 9.0 9.1 9.2 9.3 Bai RY, Jahn T, Schrem S, Munzert G, Weidner KM, Wang JY, Duyster J (August 1998). "The SH2-containing adapter protein GRB10 interacts with BCR-ABL". Oncogene. 17 (8): 941–8. doi:10.1038/sj.onc.1202024. PMID 9747873.
  10. 10.0 10.1 Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA (June 2004). "A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase". Mol. Cell. Biol. 24 (11): 4685–95. doi:10.1128/MCB.24.11.4685-4695.2004. PMC 416425. PMID 15143164.
  11. Heaney C, Kolibaba K, Bhat A, Oda T, Ohno S, Fanning S, Druker BJ (January 1997). "Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation". Blood. 89 (1): 297–306. PMID 8978305.
  12. Kolibaba KS, Bhat A, Heaney C, Oda T, Druker BJ (March 1999). "CRKL binding to BCR-ABL and BCR-ABL transformation". Leuk. Lymphoma. 33 (1–2): 119–26. doi:10.3109/10428199909093732. PMID 10194128.
  13. Lionberger JM, Smithgall TE (February 2000). "The c-Fes protein-tyrosine kinase suppresses cytokine-independent outgrowth of myeloid leukemia cells induced by Bcr-Abl". Cancer Res. 60 (4): 1097–103. PMID 10706130.
  14. 14.0 14.1 14.2 Maru Y, Peters KL, Afar DE, Shibuya M, Witte ON, Smithgall TE (February 1995). "Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS". Mol. Cell. Biol. 15 (2): 835–42. PMC 231961. PMID 7529874.
  15. Million RP, Van Etten RA (July 2000). "The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase". Blood. 96 (2): 664–70. PMID 10887132.
  16. Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB (May 1997). "Bcr phosphorylated on tyrosine 177 binds Grb2". Oncogene. 14 (19): 2367–72. doi:10.1038/sj.onc.1201053. PMID 9178913.
  17. Stanglmaier M, Warmuth M, Kleinlein I, Reis S, Hallek M (February 2003). "The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains". Leukemia. 17 (2): 283–9. doi:10.1038/sj.leu.2402778. PMID 12592324.
  18. Lionberger JM, Wilson MB, Smithgall TE (June 2000). "Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck". J. Biol. Chem. 275 (24): 18581–5. doi:10.1074/jbc.C000126200. PMID 10849448.
  19. Radziwill G, Erdmann RA, Margelisch U, Moelling K (July 2003). "The Bcr kinase downregulates Ras signaling by phosphorylating AF-6 and binding to its PDZ domain". Mol. Cell. Biol. 23 (13): 4663–72. doi:10.1128/MCB.23.13.4663-4672.2003. PMC 164848. PMID 12808105.
  20. 20.0 20.1 Salgia R, Sattler M, Pisick E, Li JL, Griffin JD (February 1996). "p210BCR/ABL induces formation of complexes containing focal adhesion proteins and the protooncogene product p120c-Cbl". Exp. Hematol. 24 (2): 310–3. PMID 8641358.
  21. Salgia R, Li JL, Lo SH, Brunkhorst B, Kansas GS, Sobhany ES, Sun Y, Pisick E, Hallek M, Ernst T (March 1995). "Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL". J. Biol. Chem. 270 (10): 5039–47. doi:10.1074/jbc.270.10.5039. PMID 7534286.
  22. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B (July 1995). "Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells". Blood. 86 (2): 726–36. PMID 7606002.
  23. Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D (October 1998). "Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase". Oncogene. 17 (15): 1889–92. doi:10.1038/sj.onc.1202117. PMID 9788431.
  24. Park AR, Oh D, Lim SH, Choi J, Moon J, Yu DY, Park SG, Heisterkamp N, Kim E, Myung PK, Lee JR (2012). "Regulation of dendritic arborization by BCR Rac1 GTPase-activating protein, a substrate of PTPRT". J. Cell Sci. 125 (Pt 19): 4518–31. doi:10.1242/jcs.105502. PMID 22767509.
  25. Takeda N, Shibuya M, Maru Y (January 1999). "The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein". Proc. Natl. Acad. Sci. U.S.A. 96 (1): 203–7. doi:10.1073/pnas.96.1.203. PMC 15117. PMID 9874796.

Further reading

  • Wang L, Seale J, Woodcock BE, Clark RE (2002). "e19a2-positive chronic myeloid leukaemia with BCR exon e16-deleted transcripts". Leukemia. 16 (8): 1562–3. doi:10.1038/sj.leu.2402600. PMID 12145699.

External links

This article incorporates text from the public domain Pfam and InterPro: IPR015123