Abelson murine leukemia viral oncogene homolog 1 also known as ABL1 is a protein that, in humans, is encoded by the ABL1gene (previous symbol ABL) located on chromosome 9.[1] c-Abl is sometimes used to refer to the version of the gene found within the mammalian genome, while v-Abl refers to the viral gene.
The ABL1proto-oncogene encodes a cytoplasmic and nuclear protein tyrosine kinase that has been implicated in processes of cell differentiation, cell division, cell adhesion, and stress response. Activity of ABL1 protein is negatively regulated by its SH3 domain, and deletion of the SH3 domain turns ABL1 into an oncogene. The t(9;22) translocation results in the head-to-tail fusion of the BCR and ABL1 genes, leading to a fusion gene present in many cases of chronic myelogenous leukemia. The DNA-binding activity of the ubiquitously expressed ABL1 tyrosine kinase is regulated by CDC2-mediated phosphorylation, suggesting a cell cycle function for ABL1. The ABL1 gene is expressed as either a 6- or a 7-kb mRNA transcript, with alternatively spliced first exons spliced to the common exons 2-11.[2]
Clinical significance
Mutations in the ABL1 gene are associated with chronic myelogenous leukemia (CML). In CML, the gene is activated by being translocated within the BCR (breakpoint cluster region) gene on chromosome 22. This new fusion gene, BCR-ABL, encodes an unregulated, cytoplasm-targeted tyrosine kinase that allows the cells to proliferate without being regulated by cytokines. This, in turn, allows the cell to become cancerous.
This gene is a partner in a fusion gene with the BCR gene in the Philadelphia chromosome, a characteristic abnormality in chronic myelogenous leukemia (CML) and rarely in some other leukemia forms. The BCR-ABL transcript encodes a tyrosine kinase, which activates mediators of the cell cycle regulation system, leading to a clonal myeloproliferative disorder. The BCR-ABL protein can be inhibited by various small molecules. One such inhibitor is imatinib mesylate, which occupies the tyrosine kinase domain and inhibits BCR-ABL's influence on the cell cycle. Second generation BCR-ABL tyrosine-kinase inhibitors are also under development
to inhibit BCR-ABL mutants resistant to imatinib.
↑Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, Shishido T (June 2003). "Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase". J. Biol. Chem. 278 (24): 21685–92. doi:10.1074/jbc.M301447200. PMID12672821.
↑Biesova Z, Piccoli C, Wong WT (January 1997). "Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth". Oncogene. 14 (2): 233–41. doi:10.1038/sj.onc.1200822. PMID9010225.
↑Yamamoto A, Suzuki T, Sakaki Y (June 2001). "Isolation of hNap1BP which interacts with human Nap1 (NCKAP1) whose expression is down-regulated in Alzheimer's disease". Gene. 271 (2): 159–69. doi:10.1016/S0378-1119(01)00521-2. PMID11418237.
↑ 6.06.1Cao C, Leng Y, Li C, Kufe D (April 2003). "Functional interaction between the c-Abl and Arg protein-tyrosine kinases in the oxidative stress response". J. Biol. Chem. 278 (15): 12961–7. doi:10.1074/jbc.M300058200. PMID12569093.
↑Dai Z, Pendergast AM (November 1995). "Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity". Genes Dev. 9 (21): 2569–82. doi:10.1101/gad.9.21.2569. PMID7590236.
↑ 8.08.1Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, Baltimore D, Gasser PJ, Park MS, Sung P, Lee EY (April 1999). "Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl". J. Biol. Chem. 274 (18): 12748–52. doi:10.1074/jbc.274.18.12748. PMID10212258.
↑Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, Hobson K, Gatei M, Zhang N, Watters D, Egerton M, Shiloh Y, Kharbanda S, Kufe D, Lavin MF (May 1997). "Interaction between ATM protein and c-Abl in response to DNA damage". Nature. 387 (6632): 520–3. doi:10.1038/387520a0. PMID9168117.
↑ 10.010.1Kishi S, Zhou XZ, Ziv Y, Khoo C, Hill DE, Shiloh Y, Lu KP (August 2001). "Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks". J. Biol. Chem. 276 (31): 29282–91. doi:10.1074/jbc.M011534200. PMID11375976.
↑Salgia R, Pisick E, Sattler M, Li JL, Uemura N, Wong WK, Burky SA, Hirai H, Chen LB, Griffin JD (October 1996). "p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene". J. Biol. Chem. 271 (41): 25198–203. doi:10.1074/jbc.271.41.25198. PMID8810278.
↑Mayer BJ, Hirai H, Sakai R (March 1995). "Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases". Curr. Biol. 5 (3): 296–305. doi:10.1016/S0960-9822(95)00060-1. PMID7780740.
↑Ling X, Ma G, Sun T, Liu J, Arlinghaus RB (January 2003). "Bcr and Abl interaction: oncogenic activation of c-Abl by sequestering Bcr". Cancer Res. 63 (2): 298–303. PMID12543778.
↑Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (July 1991). "BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner". Cell. 66 (1): 161–71. doi:10.1016/0092-8674(91)90148-R. PMID1712671.
↑Cao C, Leng Y, Kufe D (August 2003). "Catalase activity is regulated by c-Abl and Arg in the oxidative stress response". J. Biol. Chem. 278 (32): 29667–75. doi:10.1074/jbc.M301292200. PMID12777400.
↑ 18.018.1Miyoshi-Akiyama T, Aleman LM, Smith JM, Adler CE, Mayer BJ (July 2001). "Regulation of Cbl phosphorylation by the Abl tyrosine kinase and the Nck SH2/SH3 adaptor". Oncogene. 20 (30): 4058–69. doi:10.1038/sj.onc.1204528. PMID11494134.
↑ 20.020.120.2Ren R, Ye ZS, Baltimore D (April 1994). "Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites". Genes Dev. 8 (7): 783–95. doi:10.1101/gad.8.7.783. PMID7926767.
↑Heaney C, Kolibaba K, Bhat A, Oda T, Ohno S, Fanning S, Druker BJ (January 1997). "Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation". Blood. 89 (1): 297–306. PMID8978305.
↑Kyono WT, de Jong R, Park RK, Liu Y, Heisterkamp N, Groffen J, Durden DL (November 1998). "Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI)". J. Immunol. 161 (10): 5555–63. PMID9820532.
↑van Dijk TB, van Den Akker E, Amelsvoort MP, Mano H, Löwenberg B, von Lindern M (November 2000). "Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells". Blood. 96 (10): 3406–13. PMID11071635.
↑Yamanashi Y, Baltimore D (January 1997). "Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok". Cell. 88 (2): 205–11. doi:10.1016/S0092-8674(00)81841-3. PMID9008161.
↑Yu HH, Zisch AH, Dodelet VC, Pasquale EB (July 2001). "Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor". Oncogene. 20 (30): 3995–4006. doi:10.1038/sj.onc.1204524. PMID11494128.
↑Cao C, Leng Y, Huang W, Liu X, Kufe D (October 2003). "Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases". J. Biol. Chem. 278 (41): 39609–14. doi:10.1074/jbc.M305770200. PMID12893824.
↑Bai RY, Jahn T, Schrem S, Munzert G, Weidner KM, Wang JY, Duyster J (August 1998). "The SH2-containing adapter protein GRB10 interacts with BCR-ABL". Oncogene. 17 (8): 941–8. doi:10.1038/sj.onc.1202024. PMID9747873.
↑Frantz JD, Giorgetti-Peraldi S, Ottinger EA, Shoelson SE (January 1997). "Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains". J. Biol. Chem. 272 (5): 2659–67. doi:10.1074/jbc.272.5.2659. PMID9006901.
↑Kumar V, Sabatini D, Pandey P, Gingras AC, Majumder PK, Kumar M, Yuan ZM, Carmichael G, Weichselbaum R, Sonenberg N, Kufe D, Kharbanda S (April 2000). "Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase". J. Biol. Chem. 275 (15): 10779–87. doi:10.1074/jbc.275.15.10779. PMID10753870.
↑Warmuth M, Bergmann M, Priess A, Häuslmann K, Emmerich B, Hallek M (December 1997). "The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr". J. Biol. Chem. 272 (52): 33260–70. doi:10.1074/jbc.272.52.33260. PMID9407116.
↑Koch A, Mancini A, Stefan M, Niedenthal R, Niemann H, Tamura T (March 2000). "Direct interaction of nerve growth factor receptor, TrkA, with non-receptor tyrosine kinase, c-Abl, through the activation loop". FEBS Lett. 469 (1): 72–6. doi:10.1016/S0014-5793(00)01242-4. PMID10708759.
↑Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D (June 1999). "p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage". Nature. 399 (6738): 814–7. doi:10.1038/21704. PMID10391251.
↑Agami R, Blandino G, Oren M, Shaul Y (June 1999). "Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis". Nature. 399 (6738): 809–13. doi:10.1038/21697. PMID10391250.
↑Cong F, Spencer S, Côté JF, Wu Y, Tremblay ML, Lasky LA, Goff SP (December 2000). "Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation". Mol. Cell. 6 (6): 1413–23. doi:10.1016/S1097-2765(00)00138-6. PMID11163214.
↑Miyamura T, Nishimura J, Yufu Y, Nawata H (February 1997). "Interaction of BCR-ABL with the retinoblastoma protein in Philadelphia chromosome-positive cell lines". Int. J. Hematol. 65 (2): 115–21. doi:10.1016/S0925-5710(96)00539-7. PMID9071815.
↑Welch PJ, Wang JY (November 1993). "A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle". Cell. 75 (4): 779–90. doi:10.1016/0092-8674(93)90497-E. PMID8242749.
↑Agami R, Shaul Y (April 1998). "The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes". Oncogene. 16 (14): 1779–88. doi:10.1038/sj.onc.1201708. PMID9583676.
↑Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavanaugh WM, Tempst P, Clarkson B (April 1999). "A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells". Blood. 93 (8): 2707–20. PMID10194451.
↑Wang B, Golemis EA, Kruh GD (July 1997). "ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks". J. Biol. Chem. 272 (28): 17542–50. doi:10.1074/jbc.272.28.17542. PMID9211900.
↑ 48.048.1Ziemnicka-Kotula D, Xu J, Gu H, Potempska A, Kim KS, Jenkins EC, Trenkner E, Kotula L (May 1998). "Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton". J. Biol. Chem. 273 (22): 13681–92. doi:10.1074/jbc.273.22.13681. PMID9593709.
↑Bassermann F, Jahn T, Miething C, Seipel P, Bai RY, Coutinho S, Tybulewicz VL, Peschel C, Duyster J (April 2002). "Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway". J. Biol. Chem. 277 (14): 12437–45. doi:10.1074/jbc.M112397200. PMID11790798.
↑Rafalska I, Zhang Z, Benderska N, Wolff H, Hartmann AM, Brack-Werner R, Stamm S (August 2004). "The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation". Hum. Mol. Genet. 13 (15): 1535–49. doi:10.1093/hmg/ddh167. PMID15175272.
↑Bueno MJ, Pérez de Castro I, Gómez de Cedrón M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernández-Piqueras J, Malumbres M (June 2008). "Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression". Cancer Cell. 13 (6): 496–506. doi:10.1016/j.ccr.2008.04.018. PMID18538733.
Further reading
Shore SK, Tantravahi RV, Reddy EP (December 2002). "Transforming pathways activated by the v-Abl tyrosine kinase". Oncogene. 21 (56): 8568–76. doi:10.1038/sj.onc.1206084. PMID12476303.
Era T (2002). "Bcr-Abl is a "molecular switch" for the decision for growth and differentiation in hematopoietic stem cells". Int. J. Hematol. 76 (1): 35–43. doi:10.1007/BF02982716. PMID12138893.
Keung YK, Beaty M, Steward W, Jackle B, Pettnati M (2002). "Chronic myelocytic leukemia with eosinophilia, t(9;12)(q34;p13), and ETV6-ABL gene rearrangement: case report and review of the literature". Cancer Genet. Cytogenet. 138 (2): 139–42. doi:10.1016/S0165-4608(02)00609-X. PMID12505259.
Saglio G, Cilloni D (2004). "Abl: the prototype of oncogenic fusion proteins". Cell. Mol. Life Sci. 61 (23): 2897–911. doi:10.1007/s00018-004-4271-0. PMID15583852.
Shaul Y, Ben-Yehoyada M (2005). "Role of c-Abl in the DNA damage stress response". Cell Res. 15 (1): 33–5. doi:10.1038/sj.cr.7290261. PMID15686624.
Yoshida K (2007). "Regulation for nuclear targeting of the Abl tyrosine kinase in response to DNA damage". Adv. Exp. Med. Biol. 604: 155–65. doi:10.1007/978-0-387-69116-9_15. PMID17695727.
2o88: Crystal structure of the N114A mutant of ABL-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions