Hyperparathyroidism pathophysiology: Difference between revisions

Jump to navigation Jump to search
Mazia Fatima (talk | contribs)
Anmol Pitliya (talk | contribs)
No edit summary
Line 8: Line 8:
==Pathohysiology==
==Pathohysiology==


==== The effect of [[parathyroid hormone]] on [[mineral]] [[metabolism]] ====
===Parathyroid, Vitamin D, and mineral homeostasis===
Parathyroid hormone has different effects on the body. Effect of [[parathyroid hormone]] on [[inorganic phosphate]] [[metabolism]] include:
The effect of [[parathyroid hormone]] on [[mineral]] [[metabolism]] is as follows:<ref name="pmid14184232">{{cite journal |vauthors=HARRISON MT |title=INTERRELATIONSHIPS OF VITAMIN D AND PARATHYROID HORMONE IN CALCIUM HOMEOSTASIS |journal=Postgrad Med J |volume=40 |issue= |pages=497–505 |year=1964 |pmid=14184232 |pmc=2482768 |doi= |url=}}</ref><ref>{{cite book | last = Nussey | first = Stephen | title = Endocrinology : an integrated approach | publisher = Bios NCBI | location = Oxford, UK Bethesda, Md | year = 2001 | isbn = 1-85996-252-1 }}</ref>
*Increases [[excretion]] of [[Phosphate|inorganic phosphate]] from [[kidney]] resulting in decreased serum concentration of [[phosphate]].
*Effect of [[parathyroid hormone]] on [[inorganic phosphate]] [[metabolism]]:
 
**Increases [[excretion]] of [[Phosphate|inorganic phosphate]] from [[kidney]] resulting in decreased serum concentration of [[phosphate]].
*Effect on [[parathyroid hormone]] on [[calcium]] [[metabolism]]:
*Effect on [[parathyroid hormone]] on [[calcium]] [[metabolism]]:
**Direct effect:
**Direct effect:
Line 17: Line 17:
***Decreases [[excretion]] from [[kidney]].
***Decreases [[excretion]] from [[kidney]].
**Indirect effect:
**Indirect effect:
***Increases conversion of inactive [[25-hydroxy vitamin D]] to the active [[1,25-dihydroxy vitamin D]] that leat to:
***Increases conversion of inactive [[25-hydroxy vitamin D]] to the active [[1,25-dihydroxy vitamin D]] which increases absorption of [[calcium]] from [[gut]]. Decreased phosphate concentration also increases this conversion process. [[Vitamin D]] shows synergism with [[parathyroid hormone]] action on [[bone]].
****Increases absorption of [[calcium]] from [[gut]].
***Decreased serum [[inorganic phosphate]] concentration prevents [[Precipitation (chemistry)|precipitation]] of [[calcium phosphate]] in [[Bone (disambiguation)|bones]].
****Synergism effect with [[parathyroid hormone]] action on [[bone]].
**Both these direct and indirect mechanism results in an increased serum [[calcium]] concentration.
***Decreased phosphate concentration that lead to:
****Increasing the conversion of inactive [[25-hydroxy vitamin D]] to the active [[1,25-dihydroxy vitamin D]].
****Preventing [[Precipitation (chemistry)|precipitation]] of [[calcium phosphate]] in [[Bone (disambiguation)|bones]].
 
** Both these direct and indirect mechanism results in an increased serum [[calcium]] concentration.
 
*Effect of [[parathyroid hormone]] on [[magnesium]] concentration:
*Effect of [[parathyroid hormone]] on [[magnesium]] concentration:
**Decreases [[excretion]] of [[magnesium]] resulting in increased serum [[magnesium]] concentretion.
**Decreases [[excretion]] of [[magnesium]] resulting in increased serum [[magnesium]] concentretion.
 
Effect of [[Mineral|minerals]] and [[vitamin D]] on [[parathyroid hormone]]:
==== Effect of [[Mineral|minerals]] and [[vitamin D]] on [[parathyroid hormone]]: ====
*Decrease in serum [[calcium]] concentration stimulates [[parathyroid hormone]].
*Decrease in serum [[calcium]] concentration stimulates [[parathyroid hormone]].
*[[Calcium]] provides [[negative feedback]] on [[parathyroid hormone]].
*[[Calcium]] provides [[negative feedback]] on [[parathyroid hormone]].
*[[Magnesium]] provides [[negative feedback]] on [[parathyroid hormone]].
*[[Magnesium]] provides [[negative feedback]] on [[parathyroid hormone]].
*[[Vitamin D]] decreases the concentration of [[parathyroid hormone]].
*[[Vitamin D]] decreases the concentration of [[parathyroid hormone]].
The sequence of events is shown in the algorithm below:


==== The sequence of events is shown in the algorithm below: ====
{{familytree/start |}}
{{familytree/start |}}
{{familytree | | | | | | | | | | | | A01 |A01='''Parathyroid hormone'''}}  
{{familytree | | | | | | | | | | | | A01 |A01='''Parathyroid hormone'''}}  
Line 51: Line 44:


===Calcium-sensing receptors===
===Calcium-sensing receptors===
*[[Calcium]]-sensing [[Receptor (biochemistry)|receptors]] are present on [[Parathyroid gland|parathyroid glands]]. They are a type of 7-transmembrane receptors in [[G-protein coupled receptors]] superfamily of receptors.
*[[Calcium]]-sensing [[Receptor (biochemistry)|receptors]] are present on [[Parathyroid gland|parathyroid glands]]. They are a type of 7-transmembrane receptors in [[G-protein coupled receptors]] superfamily of receptors.<ref name="pmid8255296">{{cite journal| author=Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O et al.| title=Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. | journal=Nature | year= 1993 | volume= 366 | issue= 6455 | pages= 575-80 | pmid=8255296 | doi=10.1038/366575a0 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8255296  }} </ref>
*[[Calcium]]-sensing [[Receptor (biochemistry)|receptors]] sense change in [[extracellular]] concentration of ionized [[calcium]].
*[[Calcium]]-sensing [[Receptor (biochemistry)|receptors]] sense change in [[extracellular]] concentration of ionized [[calcium]].<ref name="pmid7791841">{{cite journal| author=Brown EM, Pollak M, Seidman CE, Seidman JG, Chou YH, Riccardi D et al.| title=Calcium-ion-sensing cell-surface receptors. | journal=N Engl J Med | year= 1995 | volume= 333 | issue= 4 | pages= 234-40 | pmid=7791841 | doi=10.1056/NEJM199507273330407 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7791841  }} </ref>
*[[Calcium]]-sensing [[Receptor (biochemistry)|receptor]] [[Gene expression|expression]] in reduced in primary hyperparathyroidism ([[parathyroid adenoma]]) and secondary hyperparathyroidism.
*[[Calcium]]-sensing [[Receptor (biochemistry)|receptor]] [[Gene expression|expression]] in reduced in primary hyperparathyroidism ([[parathyroid adenoma]]) and secondary hyperparathyroidism.<ref name="pmid8995751">{{cite journal| author=Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E et al.| title=Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. | journal=Kidney Int | year= 1997 | volume= 51 | issue= 1 | pages= 328-36 | pmid=8995751 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8995751  }} </ref>
*This reduced [[expression]] of receptor causes an increases in [[calcium]] sensing set point.
*This reduced [[expression]] of receptor causes an increases in [[calcium]] sensing set point.<ref name="pmid8636374">{{cite journal| author=Kifor O, Moore FD, Wang P, Goldstein M, Vassilev P, Kifor I et al.| title=Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. | journal=J Clin Endocrinol Metab | year= 1996 | volume= 81 | issue= 4 | pages= 1598-606 | pmid=8636374 | doi=10.1210/jcem.81.4.8636374 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8636374  }} </ref>
*This in turn leads to increase in [[secretion]] of [[parathyroid hormone]] in presence on normal serum concentration of extracellular ionized [[calcium]].
*This in turn leads to increase in [[secretion]] of [[parathyroid hormone]] in presence on normal serum concentration of extracellular ionized [[calcium]].


===Pathogenesis of primary hyperparathyroidism===
===Pathogenesis of primary hyperparathyroidism===
*Primary hyperparathyroidism is due to increase in [[secretion]] of [[parathyroid hormone]] from a primary process in [[parathyroid gland]].
*Primary hyperparathyroidism is due to increase in [[secretion]] of [[parathyroid hormone]] from a primary process in [[parathyroid gland]].
*Majority of times, increase in secretion of [[parathyroid hormone]] is the result of [[parathyroid adenoma]] (85%). Other causes of increase in secretion of [[parathyroid hormone]] include [[Parathyroid gland|parathyroid]] [[hyperplasia]] (15%) and [[Parathyroid cancer|parathyroid carcinoma]] (5%).  
*Majority of times, increase in secretion of [[parathyroid hormone]] is the result of [[parathyroid adenoma]] (85%). Other causes of increase in secretion of [[parathyroid hormone]] includes [[Parathyroid gland|parathyroid]] [[hyperplasia]] (15%) and [[Parathyroid cancer|parathyroid carcinoma]] (5%).<ref name="pmid206143002">{{cite journal |vauthors=Wieneke JA, Smith A |title=Parathyroid adenoma |journal=Head Neck Pathol |volume=2 |issue=4 |pages=305–8 |year=2008 |pmid=20614300 |pmc=2807581 |doi=10.1007/s12105-008-0088-8 |url=}}</ref>
*[[Calcium]]-sensing receptor [[expression]] in reduced in [[parathyroid adenoma]] resulting in an increase in [[calcium]] sensing set point.<ref name="pmid8995751">{{cite journal| author=Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E et al.| title=Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. | journal=Kidney Int | year= 1997 | volume= 51 | issue= 1 | pages= 328-36 | pmid=8995751 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8995751  }} </ref><ref name="pmid8636374">{{cite journal| author=Kifor O, Moore FD, Wang P, Goldstein M, Vassilev P, Kifor I et al.| title=Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. | journal=J Clin Endocrinol Metab | year= 1996 | volume= 81 | issue= 4 | pages= 1598-606 | pmid=8636374 | doi=10.1210/jcem.81.4.8636374 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8636374  }} </ref>
*[[Calcium]]-sensing receptor [[expression]] in reduced in [[parathyroid adenoma]] resulting in an increase in [[calcium]] sensing set point.<ref name="pmid8995751">{{cite journal| author=Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E et al.| title=Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. | journal=Kidney Int | year= 1997 | volume= 51 | issue= 1 | pages= 328-36 | pmid=8995751 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8995751  }} </ref><ref name="pmid8636374">{{cite journal| author=Kifor O, Moore FD, Wang P, Goldstein M, Vassilev P, Kifor I et al.| title=Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. | journal=J Clin Endocrinol Metab | year= 1996 | volume= 81 | issue= 4 | pages= 1598-606 | pmid=8636374 | doi=10.1210/jcem.81.4.8636374 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8636374  }} </ref>
*In [[Parathyroid gland|parathyroid]] [[hyperplasia]], an increase in cell number causes increased secretion of [[parathyroid hormone]].
*In [[Parathyroid gland|parathyroid]] [[hyperplasia]], an increase in cell number causes increased secretion of [[parathyroid hormone]].


===Pathogenesis of secondary hyperparathyroidism===
===Pathogenesis of secondary hyperparathyroidism===
*Secondary hyperparathyroidism is due to increase in [[secretion]] of [[parathyroid hormone]] from a secondary process, most commonly due [[chronic renal failure]]. Other causes include [[vitamin D deficiency]], severe [[calcium deficiency]].
*Secondary hyperparathyroidism is due to increase in [[secretion]] of [[parathyroid hormone]] from a secondary process, most commonly due [[chronic renal failure]]. Other causes include [[vitamin D deficiency]], severe [[calcium deficiency]].<ref name="pmid21454719">{{cite journal |vauthors=Cunningham J, Locatelli F, Rodriguez M |title=Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options |journal=Clin J Am Soc Nephrol |volume=6 |issue=4 |pages=913–21 |year=2011 |pmid=21454719 |doi=10.2215/CJN.06040710 |url=}}</ref>
*[[Chronic renal failure]] leads to high serum [[inorganic phosphate]] and low serum [[calcium]] and deficiency of active form of [[vitamin D]] ([[1,25-dihydroxy vitamin D]]/[[calcitriol]]).
*[[Chronic renal failure]] leads to high serum [[inorganic phosphate]] and low serum [[calcium]] and deficiency of active form of [[vitamin D]] ([[1,25-dihydroxy vitamin D]]/[[calcitriol]])
*This leads to continuous stimulation of [[parathyroid glands]] resulting [[Downregulation|down-regulation]] of [[Parathyroid gland|parathyroid]] [[Vitamin D receptor|vitamin D receptors]] and calcium-sensing receptors.
*This leads to continuous stimulation of [[parathyroid glands]] resulting [[Downregulation|down-regulation]] of [[Parathyroid gland|parathyroid]] [[Vitamin D receptor|vitamin D receptors]] and calcium-sensing receptors.
*[[Fibroblast growth factor 23]] ([[Fibroblast growth factor 23|FGF-23]]) concentration increases in [[chronic renal failure]] which plays a central role in regulation of [[phosphate]] [[vitamin D]] [[homeostasis]].
*[[Fibroblast growth factor 23]] ([[Fibroblast growth factor 23|FGF-23]]) concentration increases in [[chronic renal failure]] which plays a central role in regulation of [[phosphate]] [[vitamin D]] [[homeostasis]].
Line 103: Line 96:
*As [[chronic renal failure]] progresses, these [[negative feedback]] loops are impaired leading to deranged [[phosphate]] [[homeostasis]].
*As [[chronic renal failure]] progresses, these [[negative feedback]] loops are impaired leading to deranged [[phosphate]] [[homeostasis]].
*[[FGF-23]] have direct and indirect effect on [[parathyroid hormone]].
*[[FGF-23]] have direct and indirect effect on [[parathyroid hormone]].
**Direct effect: In normal [[parathyroid gland]], [[Fibroblast growth factor 23|FGF-23]] decreases synthesis of [[parathyroid hormone]] through the [[mitogen-activated protein kinase]] ([[MAPK]]) pathway. [[Fibroblast growth factor 23|FGF-23]] increases expression of the [[Parathyroid gland|parathyroid]] [[calcium]]-sensing receptor and the [[Calcitriol receptor|vitamin D receptor]], and reduces [[cellular]] [[proliferation]].
**Direct effect: In normal [[parathyroid gland]], [[Fibroblast growth factor 23|FGF-23]] decreases synthesis of [[parathyroid hormone]] through the [[mitogen-activated protein kinase]] ([[MAPK]]) pathway.<ref name="pmid17992255">{{cite journal |vauthors=Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J |title=The parathyroid is a target organ for FGF23 in rats |journal=J. Clin. Invest. |volume=117 |issue=12 |pages=4003–8 |year=2007 |pmid=17992255 |pmc=2066196 |doi=10.1172/JCI32409 |url=}}</ref> [[Fibroblast growth factor 23|FGF-23]] increases expression of the [[Parathyroid gland|parathyroid]] [[calcium]]-sensing receptor and the [[Calcitriol receptor|vitamin D receptor]], and reduces [[cellular]] [[proliferation]].<ref name="pmid20431039">{{cite journal |vauthors=Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M |title=FGF23 fails to inhibit uremic parathyroid glands |journal=J. Am. Soc. Nephrol. |volume=21 |issue=7 |pages=1125–35 |year=2010 |pmid=20431039 |pmc=3152229 |doi=10.1681/ASN.2009040427 |url=}}</ref>
**Indirect effect: Increased synthesis of [[parathyroid hormone]] by decreasing synthesis of [[calcitriol]].
**Indirect effect: Increased synthesis of [[parathyroid hormone]] by decreasing synthesis of [[calcitriol]].
*[[Fibroblast growth factor 23|FGF-23]] fails to activate [[Mitogen-activated protein kinase|mitogen-activated protein kinase pathway]] in [[hyperplastic]] [[parathyroid gland]] secondary to chronic renal failure.<ref name="pmid20431039">{{cite journal |vauthors=Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M |title=FGF23 fails to inhibit uremic parathyroid glands |journal=J. Am. Soc. Nephrol. |volume=21 |issue=7 |pages=1125–35 |year=2010 |pmid=20431039 |pmc=3152229 |doi=10.1681/ASN.2009040427 |url=}}</ref>
*[[Fibroblast growth factor 23|FGF-23]] fails to activate [[Mitogen-activated protein kinase|mitogen-activated protein kinase pathway]] in [[hyperplastic]] [[parathyroid gland]] secondary to chronic renal failure.<ref name="pmid20431039">{{cite journal |vauthors=Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M |title=FGF23 fails to inhibit uremic parathyroid glands |journal=J. Am. Soc. Nephrol. |volume=21 |issue=7 |pages=1125–35 |year=2010 |pmid=20431039 |pmc=3152229 |doi=10.1681/ASN.2009040427 |url=}}</ref>


===Pathogenesis of tertiary hyperparathyroidism===
===Pathogenesis of tertiary hyperparathyroidism===
*Majority of times, tertiary hyperparathyroidism occurs in patients after [[Kidney transplantation|renal transplantation]].
*Majority of times, tertiary hyperparathyroidism occurs in patients after [[Kidney transplantation|renal transplantation]].<ref name="pmid19836494">{{cite journal |vauthors=Pitt SC, Sippel RS, Chen H |title=Secondary and tertiary hyperparathyroidism, state of the art surgical management |journal=Surg. Clin. North Am. |volume=89 |issue=5 |pages=1227–39 |year=2009 |pmid=19836494 |pmc=2905047 |doi=10.1016/j.suc.2009.06.011 |url=}}</ref>
*Patients with secondary hyperparathyroidism continues to have elevated [[parathyroid hormone]] even after [[Kidney transplantation|renal transplantation]].
*Patients with secondary hyperparathyroidism continues to have elevated [[parathyroid hormone]] even after [[Kidney transplantation|renal transplantation]].
*Patients with secondary hyperparathyroidism and long term [[hypocalcemia]] tends to have [[hyperplasia]] of [[Chief cell|chief cells]] of [[parathyroid gland]] and increased [[secretion]] of [[parathyroid hormone]].
*Patients with secondary hyperparathyroidism and long term [[hypocalcemia]] tends to have [[hyperplasia]] of [[Chief cell|chief cells]] of [[parathyroid gland]] and increased [[secretion]] of [[parathyroid hormone]].
Line 117: Line 110:


The development of primary hyperparathyroidism is the result of multiple [[genetic mutations]] in minority of cases. Genes involved in the pathogenesis of primary hyperparathyroidism include [[calcium]]-sensing receptor gene, HRPT2 gene (CDC73 gene), [[Cyclin D1]] gene (CCND1)/PRAD1 gene, [[MEN1]] gene, and [[RET gene]].
The development of primary hyperparathyroidism is the result of multiple [[genetic mutations]] in minority of cases. Genes involved in the pathogenesis of primary hyperparathyroidism include [[calcium]]-sensing receptor gene, HRPT2 gene (CDC73 gene), [[Cyclin D1]] gene (CCND1)/PRAD1 gene, [[MEN1]] gene, and [[RET gene]].
*'''Calcium-sensing receptor gene mutation:'''
*'''Calcium-sensing receptor gene mutation:'''<ref name="pmid7593409">{{cite journal |vauthors=Hosokawa Y, Pollak MR, Brown EM, Arnold A |title=Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors |journal=J. Clin. Endocrinol. Metab. |volume=80 |issue=11 |pages=3107–10 |year=1995 |pmid=7593409 |doi=10.1210/jcem.80.11.7593409 |url=}}</ref>
**[[Calcium]]-sensing receptor (CSR) gene is present on chromosome 3q.
**[[Calcium]]-sensing receptor (CSR) gene is present on chromosome 3q.
**Few individuals carries an [[inherited]] [[mutation]] in the [[extracellular]] [[calcium]]-sensing receptor gene.
**Few individuals carries an [[inherited]] [[mutation]] in the [[extracellular]] [[calcium]]-sensing receptor gene.
**The first identified [[mutation]] in CSR gene is a point mutation in which [[phenylalanine]] is replaced with [[leucine]] at [[codon]] 881 of CSR gene.
**The first identified [[mutation]] in CSR gene is a point mutation in which [[phenylalanine]] is replaced with [[leucine]] at [[codon]] 881 of CSR gene.<ref name="pmid10843194">{{cite journal |vauthors=Carling T, Szabo E, Bai M, Ridefelt P, Westin G, Gustavsson P, Trivedi S, Hellman P, Brown EM, Dahl N, Rastad J |title=Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor |journal=J. Clin. Endocrinol. Metab. |volume=85 |issue=5 |pages=2042–7 |year=2000 |pmid=10843194 |doi=10.1210/jcem.85.5.6477 |url=}}</ref>
**This [[mutation]] reduces the activity of [[calcium]]-sensing receptor.
**This [[mutation]] reduces the activity of [[calcium]]-sensing receptor.
** This mutation can be [[heterozygous]] or [[homozygous]].
** This mutation can be [[heterozygous]] or [[homozygous]].
**Individuals carrying [[heterozygous]] [[mutation]] have familial hypocalciuric hypercalcemia (FHH) or familial benign hypercalcemia. FHH is characterized by [[Parathyroid gland|parathyroid]] dependent [[hypercalcemia]] and decreased responsiveness of [[Parathyroid gland|parathyroid]] and [[kidney]] to [[hypercalcemia]].
**Individuals carrying [[heterozygous]] [[mutation]] have familial hypocalciuric hypercalcemia (FHH) or familial benign hypercalcemia. FHH is characterized by [[Parathyroid gland|parathyroid]] dependent [[hypercalcemia]] and decreased responsiveness of [[Parathyroid gland|parathyroid]] and [[kidney]] to [[hypercalcemia]].
**Individuals carrying [[homozygous]] [[mutation]] have neonatal severe hyperparathyroidism. Neonatal severe hyperparathyroidism is characterized by marked [[Parathyroid gland|parathyroid]] [[hyperplasia]].
**Individuals carrying [[homozygous]] [[mutation]] have neonatal severe hyperparathyroidism. Neonatal severe hyperparathyroidism is characterized by marked [[Parathyroid gland|parathyroid]] [[hyperplasia]].
*[[Familial hypocalciuric hypercalcemia|Familial hypocalciuric hypercalcemia (FHH)]] and neonatal severe hyperparathyroidism are transmitted in [[Autosomal dominant inheritance|autosomal dominant]] pattern.  
*Familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism are transmitted in [[Autosomal dominant inheritance|autosomal dominant]] pattern.  


*'''HRPT2 gene(CDC73 gene) mutations:'''
*'''HRPT2 gene(CDC73 gene) mutations:'''<ref name="pmid14585940">{{cite journal| author=Shattuck TM, Välimäki S, Obara T, Gaz RD, Clark OH, Shoback D et al.| title=Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. | journal=N Engl J Med | year= 2003 | volume= 349 | issue= 18 | pages= 1722-9 | pmid=14585940 | doi=10.1056/NEJMoa031237 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14585940  }} </ref>
**HRPT2 gene code for parafibromin protein.
**HRPT2 gene code for parafibromin protein.
**HRPT2 gene mutations are found in a type of familial hyperparathyroidism, hyperparathyroidism-jaw tumor (HPT-JT) syndrome.
**HRPT2 gene mutations are found in a type of familial hyperparathyroidism, hyperparathyroidism-jaw tumor (HPT-JT) syndrome.
**HRTP2 gene mutations increases risk of [[parathyroid carcinoma]].
**HRTP2 gene mutations increases risk of [[parathyroid carcinoma]].
*'''[[Cyclin D1]] gene (CCND1)/PRAD1 gene:'''
*'''[[Cyclin D1]] gene (CCND1)/PRAD1 gene:'''<ref name="pmid19373510">{{cite journal| author=Westin G, Björklund P, Akerström G| title=Molecular genetics of parathyroid disease. | journal=World J Surg | year= 2009 | volume= 33 | issue= 11 | pages= 2224-33 | pmid=19373510 | doi=10.1007/s00268-009-0022-6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19373510  }} </ref><ref name="pmid8626826">{{cite journal| author=Hsi ED, Zukerberg LR, Yang WI, Arnold A| title=Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. | journal=J Clin Endocrinol Metab | year= 1996 | volume= 81 | issue= 5 | pages= 1736-9 | pmid=8626826 | doi=10.1210/jcem.81.5.8626826 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8626826  }} </ref>
**PRAD1 (parathyroid adenoma 1) is a [[protooncogene]] located on chromosome 11q13.
**PRAD1 (parathyroid adenoma 1) is a [[protooncogene]] located on chromosome 11q13.
**[[Cyclin D1]] gene [[translocation]] and [[oncogene]] action observed in 8% of [[Adenoma|adenomas]].
**[[Cyclin D1]] gene [[translocation]] and [[oncogene]] action observed in 8% of [[Adenoma|adenomas]].
**[[Cyclin D1]] gene [[overexpression]] is observed in 20% to 40% of parathyroid [[Adenoma|adenomas]].
**[[Cyclin D1]] gene [[overexpression]] is observed in 20% to 40% of parathyroid [[Adenoma|adenomas]].
*'''[[MEN1]] gene:'''<ref name="pmid19373510">{{cite journal| author=Westin G, Björklund P, Akerström G| title=Molecular genetics of parathyroid disease. | journal=World J Surg | year= 2009 | volume= 33 | issue= 11 | pages= 2224-33 | pmid=19373510 | doi=10.1007/s00268-009-0022-6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19373510  }} </ref>
*'''[[MEN1]] gene:'''<ref name="pmid19373510">{{cite journal| author=Westin G, Björklund P, Akerström G| title=Molecular genetics of parathyroid disease. | journal=World J Surg | year= 2009 | volume= 33 | issue= 11 | pages= 2224-33 | pmid=19373510 | doi=10.1007/s00268-009-0022-6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19373510 }} </ref><ref name="pmid9215689">{{cite journal| author=Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC et al.| title=Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. | journal=Hum Mol Genet | year= 1997 | volume= 6 | issue= 7 | pages= 1169-75 | pmid=9215689 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9215689 }} </ref>
**[[Multiple endocrine neoplasia type 1|MEN 1]] ics a [[Tumor suppressor gene|tumor supressor gene]] on chromosome 11q13.
**[[Multiple endocrine neoplasia type 1|MEN 1]] ics a [[Tumor suppressor gene|tumor supressor gene]] on chromosome 11q13.
**Somatic loss of single [[MEN1]] allele is observed in  25% to 40% of sporadic [[Parathyroid adenoma|parathyroid adenomas]].
**Somatic loss of single [[MEN1]] allele is observed in  25% to 40% of sporadic [[Parathyroid adenoma|parathyroid adenomas]].
*'''RET gene:'''
*'''RET gene:'''<ref>{{cite web |url=https://www.ncbi.nlm.nih.gov/books/NBK1257/|title=Multiple Endocrine Neoplasia Type 2 |last1=Marquard |first1=Jessica |last2=Eng |first2=Charis |date=September 27, 1999 |website= |publisher=GeneReviews® [Internet] |access-date= |quote=}}</ref>
**[[RET gene]] is a [[proto-oncogene]].
**[[RET gene]] is a [[proto-oncogene]].
**[[RET proto-oncogene]] is associated with multiple endocrine neoplasia type 2 (MEN 2).
**[[RET proto-oncogene]] is associated with multiple endocrine neoplasia type 2 (MEN 2).
**[[Multiple endocrine neoplasia type 2|MEN2A]] caries increased risk of [[parathyroid adenoma]] and/or [[Parathyroid gland|parathyroid]] [[hyperplasia]].
**[[Multiple endocrine neoplasia type 2|MEN2A]] caries increased risk of [[parathyroid adenoma]] and/or [[Parathyroid gland|parathyroid]] [[hyperplasia]].
*'''CDNK1B gene:'''
*'''CDNK1B gene:'''<ref>{{cite book |last=Bilezikian |first=JP |date=January 15, 2017 |title=Primary Hyperparathyroidism |veditors=De Groot LJ, Chrousos G, Dungan K, et al.|url=https://www.ncbi.nlm.nih.gov/books/NBK278923 |location=Endotext [Internet] |publisher= South Dartmouth (MA): MDText.com, Inc.|page= |isbn= |author-link= }}</ref>
**CDNK1B mutation causes Multiple endocrine neoplasia type 4 (MEN 4).
**CDNK1B mutation causes Multiple endocrine neoplasia type 4 (MEN 4).
**[[Parathyroid]] tumors are found along with [[anterior pituitary]], [[gonadal]], [[adrenal]], and [[renal]] tumors in [[Multiple endocrine neoplasia type 4|MEN 4]] syndrome.
**Parathyroid tumors are found along with anterior pituitary, gonadal, adrenal, and renal tumors in MEN 4 syndrome.
**CDNK1B encodes for the [[cyclin-dependent kinase]] inhibitor p27kip1.
**CDNK1B encodes for the cyclin-dependent kinase inhibitor p27kip1.


==Associated Conditions==
==Associated Conditions==
The conditions associated with hyperparathyroidism include:<ref name="pmid7593409">{{cite journal |vauthors=Hosokawa Y, Pollak MR, Brown EM, Arnold A |title=Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors |journal=J. Clin. Endocrinol. Metab. |volume=80 |issue=11 |pages=3107–10 |year=1995 |pmid=7593409 |doi=10.1210/jcem.80.11.7593409 |url=}}</ref><ref name="pmid14585940">{{cite journal| author=Shattuck TM, Välimäki S, Obara T, Gaz RD, Clark OH, Shoback D et al.| title=Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. | journal=N Engl J Med | year= 2003 | volume= 349 | issue= 18 | pages= 1722-9 | pmid=14585940 | doi=10.1056/NEJMoa031237 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14585940  }} </ref><ref name="pmid9215689">{{cite journal| author=Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC et al.| title=Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. | journal=Hum Mol Genet | year= 1997 | volume= 6 | issue= 7 | pages= 1169-75 | pmid=9215689 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9215689  }} </ref>
The conditions associated with hyperparathyroidism include:<ref name="pmid25166047">{{cite journal |vauthors=Bandeira F, Cusano NE, Silva BC, Cassibba S, Almeida CB, Machado VC, Bilezikian JP |title=Bone disease in primary hyperparathyroidism |journal=Arq Bras Endocrinol Metabol |volume=58 |issue=5 |pages=553–61 |year=2014 |pmid=25166047 |pmc=4315357 |doi= |url=}}</ref><ref name="pmid15507543">{{cite journal| author=Rodriguez M, Nemeth E, Martin D| title=The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. | journal=Am J Physiol Renal Physiol | year= 2005 | volume= 288 | issue= 2 | pages= F253-64 | pmid=15507543 | doi=10.1152/ajprenal.00302.2004 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15507543  }} </ref><ref name="pmid21917870">{{cite journal |vauthors=Espiritu RP, Kearns AE, Vickers KS, Grant C, Ryu E, Wermers RA |title=Depression in primary hyperparathyroidism: prevalence and benefit of surgery |journal=J. Clin. Endocrinol. Metab. |volume=96 |issue=11 |pages=E1737–45 |year=2011 |pmid=21917870 |doi=10.1210/jc.2011-1486 |url=}}</ref><ref name="pmid7593409">{{cite journal |vauthors=Hosokawa Y, Pollak MR, Brown EM, Arnold A |title=Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors |journal=J. Clin. Endocrinol. Metab. |volume=80 |issue=11 |pages=3107–10 |year=1995 |pmid=7593409 |doi=10.1210/jcem.80.11.7593409 |url=}}</ref><ref name="pmid14585940">{{cite journal| author=Shattuck TM, Välimäki S, Obara T, Gaz RD, Clark OH, Shoback D et al.| title=Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. | journal=N Engl J Med | year= 2003 | volume= 349 | issue= 18 | pages= 1722-9 | pmid=14585940 | doi=10.1056/NEJMoa031237 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14585940  }} </ref><ref name="pmid9215689">{{cite journal| author=Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC et al.| title=Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. | journal=Hum Mol Genet | year= 1997 | volume= 6 | issue= 7 | pages= 1169-75 | pmid=9215689 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9215689  }} </ref><ref>{{cite web |url=https://www.ncbi.nlm.nih.gov/books/NBK1257/|title=Multiple Endocrine Neoplasia Type 2 |last1=Marquard |first1=Jessica |last2=Eng |first2=Charis |date=September 27, 1999 |website= |publisher=GeneReviews® [Internet] |access-date= |quote=}}</ref><ref>{{cite book |last=Bilezikian |first=JP |date=January 15, 2017 |title=Primary Hyperparathyroidism |veditors=De Groot LJ, Chrousos G, Dungan K, et al.|url=https://www.ncbi.nlm.nih.gov/books/NBK278923 |location=Endotext [Internet] |publisher= South Dartmouth (MA): MDText.com, Inc.|page= |isbn= |author-link= }}</ref><ref name="pmid9801732">{{cite journal |vauthors=Mazzuoli GF, D'Erasmo E, Pisani D |title=Primary hyperparathyroidism and osteoporosis |journal=Aging (Milano) |volume=10 |issue=3 |pages=225–31 |year=1998 |pmid=9801732 |doi= |url=}}</ref><ref name="pmid11493580">{{cite journal| author=Lips P| title=Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. | journal=Endocr Rev | year= 2001 | volume= 22 | issue= 4 | pages= 477-501 | pmid=11493580 | doi=10.1210/edrv.22.4.0437 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11493580  }} </ref><ref name="pmid20305774">{{cite journal |vauthors=Michael JW, Schlüter-Brust KU, Eysel P |title=The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee |journal=Dtsch Arztebl Int |volume=107 |issue=9 |pages=152–62 |year=2010 |pmid=20305774 |pmc=2841860 |doi=10.3238/arztebl.2010.0152 |url=}}</ref><ref name="pmid22874807">{{cite journal |vauthors=Bai HX, Giefer M, Patel M, Orabi AI, Husain SZ |title=The association of primary hyperparathyroidism with pancreatitis |journal=J. Clin. Gastroenterol. |volume=46 |issue=8 |pages=656–61 |year=2012 |pmid=22874807 |pmc=4428665 |doi=10.1097/MCG.0b013e31825c446c |url=}}</ref>
*[[Brown tumor]]
*[[Brown tumor]]
*[[Chronic renal failure]]
*[[Chronic renal failure]]
*[[Depression]]
*[[Depression]]
*[[Familial hypocalciuric hypercalcemia]]
*Familial hypocalciuric hypercalcemia
*Hyperparathyroid-jaw tumor syndrome
*Hyperparathyroid-jaw tumor syndrome
*[[Hypertension]]
*[[Hypertension]]
Line 168: Line 161:
===Parathyroid glands===
===Parathyroid glands===
====Parathyroid adenoma====
====Parathyroid adenoma====
*On gross pathology, [[parathyroid adenoma]] is a soft, tan nodule which is well-circumscribed by a delicate [[capsule]].
*On gross pathology, [[parathyroid adenoma]] is a soft, tan nodule which is well-circumscribed by a delicate [[capsule]].<ref name=":0">{{cite book | last = Kumar | first = Vinay | title = Robbins basic pathology | publisher = Elsevier/Saunders | location = Philadelphia, PA | year = 2013 | page=736-737 | isbn = 9781437717815 }}</ref>
*Most commonly, [[parathyroid adenoma]] is present in  single [[gland]]. Some times multiple [[Gland|glands]] are involved.
*Most commonly, [[parathyroid adenoma]] is present in  single [[gland]]. Some times multiple [[Gland|glands]] are involved.
*If single [[gland]] is involved, the other [[Gland|glands]] may shrink due to [[negative feedback]].
*If single [[gland]] is involved, the other [[Gland|glands]] may shrink due to [[negative feedback]].
*Majority of times, [[parathyroid adenoma]] weight ranges between 0.5 gram to 5 gram.
*Majority of times, [[parathyroid adenoma]] weight ranges between 0.5 gram to 5 gram.
*Typically, cut surface of [[parathyroid adenoma]] is smooth, soft, and reddish brown in color. It should be differentiated from normal [[parathyroid gland]] tissue which is yellow-brown color.
*Typically, cut surface of [[parathyroid adenoma]] is smooth, soft, and reddish brown in color. It should be differentiated from normal [[parathyroid gland]] tissue which is yellow-brown color.<ref name="pmid20614300">{{cite journal |vauthors=Wieneke JA, Smith A |title=Parathyroid adenoma |journal=Head Neck Pathol |volume=2 |issue=4 |pages=305–8 |year=2008 |pmid=20614300 |pmc=2807581 |doi=10.1007/s12105-008-0088-8 |url=}}</ref>
*The tissue of [[parathyroid gland]] that is not involved in [[parathyroid adenoma]] is typically atrophied and compressed. Fat component of normal [[parathyroid]] tissue is also observed.
*The tissue of [[parathyroid gland]] that is not involved in [[parathyroid adenoma]] is typically atrophied and compressed. Fat component of normal parathyroid tissue is also observed.
*On rare occasion, [[parathyroid adenoma]] may be [[cystic]].
*On rare occasion, [[parathyroid adenoma]] may be [[cystic]].
{|
{|
Line 194: Line 187:
===Other organs===
===Other organs===
====Bones====
====Bones====
*There is erosion of [[bone]] martix and [[bone]] [[resorption]] due to increase in [[Osteoclast|osteoclastic]] activity.<ref name=":0" />
*There is erosion of [[bone]] martix and [[bone]] [[resorption]] due to increase in [[Osteoclast|osteoclastic]] activity.<ref name=":0" /><ref name="pmid333432">{{cite journal |vauthors=Goeddel DV, Yansura DG, Caruthers MH |title=Binding of synthetic lactose operator DNAs to lactose represessors |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=74 |issue=8 |pages=3292–6 |year=1977 |pmid=333432 |pmc=431535 |doi= |url=}}</ref>
*Most common site is [[metaphysis]] of long tubular [[bones]].
*Most common site is [[metaphysis]] of long tubular [[bones]].
*There is increased [[Osteoblast|osteoblastic]] activity along with bone [[resorption]] leading to formation of new bone [[trabeculae]].
*There is increased [[Osteoblast|osteoblastic]] activity along with bone [[resorption]] leading to formation of new bone [[trabeculae]].
Line 203: Line 196:
{|
{|
| colspan="2" |
| colspan="2" |
*[[Hypercalcemia]] due to hyperparathyroidism may lead to formation of [[nephrolithiasis]] as well as [[nephrocalcinosis]].
*[[Hypercalcemia]] due to hyperparathyroidism may lead to formation of [[nephrolithiasis]] as well as [[nephrocalcinosis]].<ref name="pmid22470864">{{cite journal |vauthors=Lila AR, Sarathi V, Jagtap V, Bandgar T, Menon PS, Shah NS |title=Renal manifestations of primary hyperparathyroidism |journal=Indian J Endocrinol Metab |volume=16 |issue=2 |pages=258–62 |year=2012 |pmid=22470864 |pmc=3313745 |doi=10.4103/2230-8210.93745 |url=}}</ref>
|-
|-
|
|
Line 212: Line 205:


====Other organs====
====Other organs====
*[[Hypercalcemia]] due to hyperparathyroidism may cause metastatic [[calcification]] in many organs including [[lungs]], [[heart]], [[blood vessels]], [[stomach]].<ref name=":0" />
*[[Hypercalcemia]] due to hyperparathyroidism may cause metastatic [[calcification]] in many organs including [[lungs]], [[heart]], [[blood vessels]], [[stomach]].<ref name=":0" /><ref name="pmid25011508">{{cite journal |vauthors=Gui X, Miao L, Cai H, Xiao Y, Zhang D, Wang J, Meng F |title=[Primary hyperparathyroidism with metastatic pulmonary calcification: a case report and review of literature] |language=Chinese |journal=Zhonghua Jie He He Hu Xi Za Zhi |volume=37 |issue=5 |pages=343–6 |year=2014 |pmid=25011508 |doi= |url=}}</ref>


==Microscopic Pathology==
==Microscopic Pathology==
Line 252: Line 245:
*Definitive diagnostic criteria include invasion of surrounding tissue and [[metastasis]].
*Definitive diagnostic criteria include invasion of surrounding tissue and [[metastasis]].
*About one third of cases have local recurrence and another one third have distant [[metastasis]].
*About one third of cases have local recurrence and another one third have distant [[metastasis]].
{{#ev:youtube|sD9st1ZPFrQ}}


==References==
==References==
Line 260: Line 251:
{{WH}}
{{WH}}
{{WS}}
{{WS}}
<references />

Revision as of 21:28, 3 October 2017

Hyperparathyroidism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hyperparathyroidism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hyperparathyroidism pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hyperparathyroidism pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hyperparathyroidism pathophysiology

CDC on Hyperparathyroidism pathophysiology

Hyperparathyroidism pathophysiology in the news

Blogs on Hyperparathyroidism pathophysiology

Directions to Hospitals Treating Hyperparathyroidism

Risk calculators and risk factors for Hyperparathyroidism pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Anmol Pitliya, M.B.B.S. M.D.[2]

Overview

Hyperparathyroidism is an increase in serum parathyroid hormone. Normally, parathyroid hormone increases serum calcium and magnesium concentration, and decreases serum phosphate concentration. Secretion of parathyroid hormone from parathyroid gland is stimulated by low serum calcium. Parathyroid glands have calcium-sensing receptors responsible for sensing extracellular ionized calcium. Calcium and magnesium provides a negative feedback for secretion of parathyroid hormone. Primary hyperparathyroidism is due to increase in secretion of parathyroid hormone from a primary process in parathyroid gland.Majority of times, increase in secretion of parathyroid hormone is the result of parathyroid adenoma (85%). Calcium-sensing receptor expression in reduced in parathyroid adenoma resulting in an increase in calcium sensing set point. In minority of cases, development of primary hyperparathyroidism is the result of multiple genetic mutations. Genes involved in the pathogenesis of primary hyperparathyroidism include calcium-sensing receptor gene, HRPT2 gene (CDC73 gene), Cyclin D1 gene (CCND1)/PRAD1 gene, MEN1 gene, and RET gene. Secondary hyperparathyroidism is due to increase in secretion of parathyroid hormone from a secondary process, most commonly due chronic renal failure. Fibroblast growth factor 23 (FGF-23) concentration increases in chronic renal failure which plays a central role in regulation of phosphate vitamin D homeostasis and pathogenesis of secondary hyperparathyroidism. Majority of times, tertiary hyperparathyroidism occurs in patients after renal transplantation.Patients with secondary hyperparathyroidism continues to have elevated parathyroid hormone even after renal transplantation. Classically, there is hyperplasia of all four of parathyroid gland. On gross pathology, parathyroid adenoma is a soft, tan nodule which is well-circumscribed by a delicate capsule. Typically, cut surface of parathyroid adenoma is smooth, soft, and reddish brown in color. It should be differentiated from normal parathyroid gland tissue which is yellow-brown color. Parathyroid hyperplasia usually involves multiple glands. Bones and kidney are also commonly involved in hyperparathyroidism. Hypercalcemia due to hyperparathyroidism may cause metastatic calcification in many organs including lungs, heart, blood vessels, stomach. Chief cells are predominant in parathyroid adenoma on microcopy. Adenoma is seperated from a rim of non-neoplastic tissue on the edge by a fibrous capsule. Endocrine atypia (cells with bizarre and pleomorphic nuclei) is often seen in parathyroid adenoma. It should not be mistaken as a sign of malignancy. Majority of times, hyperplasia of chief cells is observed in parathyroid hyperplasia. It may be diffuse or multinodular. Cytologic details are unreliable for diagnosis of parathyroid carcinoma.

Pathohysiology

Parathyroid, Vitamin D, and mineral homeostasis

The effect of parathyroid hormone on mineral metabolism is as follows:[1][2]

Effect of minerals and vitamin D on parathyroid hormone:

The sequence of events is shown in the algorithm below:

 
 
 
 
 
 
 
 
 
 
 
Parathyroid hormone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kidney
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decreased excretion of magnesium
 
 
 
Increasead conversion of inactive 25-hydroyxvitamin D to the active 1,25-dihydroyxvitamin D
 
 
Increase excretion of inorganic phosphate
 
 
 
 
Decrease excretion of calcium
 
 
 
 
 
Increased resorption of bone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Increased serum concentration of magnesium
 
 
 
Increased absorption of calcium from gut
 
 
Decreased serum concentration of inorganic phosphate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prevents precipitation of calcium phosphate in bones
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Increased serum concentration of calcium
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Calcium-sensing receptors

Pathogenesis of primary hyperparathyroidism

Pathogenesis of secondary hyperparathyroidism

 
 
 
 
 
 
 
 
Chronic renal failure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elevated serum inorganic phosphate concentration
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elevated FGF-23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decreased Calcitriol
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decreaed serum calcium concentration
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Continuous stimulation of parathyroid gland
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Downregulation of parathyroid vitaminn D receptors and calcium-sensing receptors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parathyroid hyperplasia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Increased secretion of parathyroid hormone
 
 
 
 
 
 

Mechanism of fibroblast growth factor 23 (FGF-23)

The mechanism of fibroblast growth factor 23 (FGF-23) in chronic renal disease and development of secondary hyperparathyroidism is as follows:[8]

Pathogenesis of tertiary hyperparathyroidism

Genetics

The development of primary hyperparathyroidism is the result of multiple genetic mutations in minority of cases. Genes involved in the pathogenesis of primary hyperparathyroidism include calcium-sensing receptor gene, HRPT2 gene (CDC73 gene), Cyclin D1 gene (CCND1)/PRAD1 gene, MEN1 gene, and RET gene.

Associated Conditions

The conditions associated with hyperparathyroidism include:[20][21][22][12][14][17][23][24][25][26][27][28]

Gross Pathology

Parathyroid glands

Parathyroid adenoma

Parathyroid adenoma location - Source-Blausen.com staff (2014)."Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436
Gross pathology - Parathyroid adenoma - Source:Case courtesy of Dr Hein Els, Radiopaedia.org, rID: 46638
Cut surface of a very large (4 cm) parathyroid adenoma - Source:By Ed Uthman, MD (Own work), via Wikimedia Commons

Parathyroid hyperplasia

Parathyroid carcinoma

Other organs

Bones

Kidneys

Nephrolithiasis (kidney stones) - location - Source: Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0), via Wikimedia Commons]
Nephrolithiasis - calcium oxalate kidney stone - Source: wikimedia commons

Other organs

Microscopic Pathology

Parathyroid adenoma

Parathyroid hyperplasia

Parathyroid carcinoma

  • Cytologic details are unreliable for diagnosis of parathyroid carcinoma.
  • Definitive diagnostic criteria include invasion of surrounding tissue and metastasis.
  • About one third of cases have local recurrence and another one third have distant metastasis.

References

  1. HARRISON MT (1964). "INTERRELATIONSHIPS OF VITAMIN D AND PARATHYROID HORMONE IN CALCIUM HOMEOSTASIS". Postgrad Med J. 40: 497–505. PMC 2482768. PMID 14184232.
  2. Nussey, Stephen (2001). Endocrinology : an integrated approach. Oxford, UK Bethesda, Md: Bios NCBI. ISBN 1-85996-252-1.
  3. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O; et al. (1993). "Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid". Nature. 366 (6455): 575–80. doi:10.1038/366575a0. PMID 8255296.
  4. Brown EM, Pollak M, Seidman CE, Seidman JG, Chou YH, Riccardi D; et al. (1995). "Calcium-ion-sensing cell-surface receptors". N Engl J Med. 333 (4): 234–40. doi:10.1056/NEJM199507273330407. PMID 7791841.
  5. 5.0 5.1 Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E; et al. (1997). "Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism". Kidney Int. 51 (1): 328–36. PMID 8995751.
  6. 6.0 6.1 Kifor O, Moore FD, Wang P, Goldstein M, Vassilev P, Kifor I; et al. (1996). "Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism". J Clin Endocrinol Metab. 81 (4): 1598–606. doi:10.1210/jcem.81.4.8636374. PMID 8636374.
  7. Wieneke JA, Smith A (2008). "Parathyroid adenoma". Head Neck Pathol. 2 (4): 305–8. doi:10.1007/s12105-008-0088-8. PMC 2807581. PMID 20614300.
  8. 8.0 8.1 Cunningham J, Locatelli F, Rodriguez M (2011). "Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options". Clin J Am Soc Nephrol. 6 (4): 913–21. doi:10.2215/CJN.06040710. PMID 21454719.
  9. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007). "The parathyroid is a target organ for FGF23 in rats". J. Clin. Invest. 117 (12): 4003–8. doi:10.1172/JCI32409. PMC 2066196. PMID 17992255.
  10. 10.0 10.1 Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M (2010). "FGF23 fails to inhibit uremic parathyroid glands". J. Am. Soc. Nephrol. 21 (7): 1125–35. doi:10.1681/ASN.2009040427. PMC 3152229. PMID 20431039.
  11. Pitt SC, Sippel RS, Chen H (2009). "Secondary and tertiary hyperparathyroidism, state of the art surgical management". Surg. Clin. North Am. 89 (5): 1227–39. doi:10.1016/j.suc.2009.06.011. PMC 2905047. PMID 19836494.
  12. 12.0 12.1 Hosokawa Y, Pollak MR, Brown EM, Arnold A (1995). "Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors". J. Clin. Endocrinol. Metab. 80 (11): 3107–10. doi:10.1210/jcem.80.11.7593409. PMID 7593409.
  13. Carling T, Szabo E, Bai M, Ridefelt P, Westin G, Gustavsson P, Trivedi S, Hellman P, Brown EM, Dahl N, Rastad J (2000). "Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor". J. Clin. Endocrinol. Metab. 85 (5): 2042–7. doi:10.1210/jcem.85.5.6477. PMID 10843194.
  14. 14.0 14.1 Shattuck TM, Välimäki S, Obara T, Gaz RD, Clark OH, Shoback D; et al. (2003). "Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma". N Engl J Med. 349 (18): 1722–9. doi:10.1056/NEJMoa031237. PMID 14585940.
  15. 15.0 15.1 Westin G, Björklund P, Akerström G (2009). "Molecular genetics of parathyroid disease". World J Surg. 33 (11): 2224–33. doi:10.1007/s00268-009-0022-6. PMID 19373510.
  16. Hsi ED, Zukerberg LR, Yang WI, Arnold A (1996). "Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study". J Clin Endocrinol Metab. 81 (5): 1736–9. doi:10.1210/jcem.81.5.8626826. PMID 8626826.
  17. 17.0 17.1 Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC; et al. (1997). "Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states". Hum Mol Genet. 6 (7): 1169–75. PMID 9215689.
  18. Marquard, Jessica; Eng, Charis (September 27, 1999). "Multiple Endocrine Neoplasia Type 2". GeneReviews® [Internet].
  19. Bilezikian JP (January 15, 2017). De Groot LJ, Chrousos G, Dungan K, et al., eds. Primary Hyperparathyroidism. Endotext [Internet]: South Dartmouth (MA): MDText.com, Inc.
  20. Bandeira F, Cusano NE, Silva BC, Cassibba S, Almeida CB, Machado VC, Bilezikian JP (2014). "Bone disease in primary hyperparathyroidism". Arq Bras Endocrinol Metabol. 58 (5): 553–61. PMC 4315357. PMID 25166047.
  21. Rodriguez M, Nemeth E, Martin D (2005). "The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism". Am J Physiol Renal Physiol. 288 (2): F253–64. doi:10.1152/ajprenal.00302.2004. PMID 15507543.
  22. Espiritu RP, Kearns AE, Vickers KS, Grant C, Ryu E, Wermers RA (2011). "Depression in primary hyperparathyroidism: prevalence and benefit of surgery". J. Clin. Endocrinol. Metab. 96 (11): E1737–45. doi:10.1210/jc.2011-1486. PMID 21917870.
  23. Marquard, Jessica; Eng, Charis (September 27, 1999). "Multiple Endocrine Neoplasia Type 2". GeneReviews® [Internet].
  24. Bilezikian JP (January 15, 2017). De Groot LJ, Chrousos G, Dungan K, et al., eds. Primary Hyperparathyroidism. Endotext [Internet]: South Dartmouth (MA): MDText.com, Inc.
  25. Mazzuoli GF, D'Erasmo E, Pisani D (1998). "Primary hyperparathyroidism and osteoporosis". Aging (Milano). 10 (3): 225–31. PMID 9801732.
  26. Lips P (2001). "Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications". Endocr Rev. 22 (4): 477–501. doi:10.1210/edrv.22.4.0437. PMID 11493580.
  27. Michael JW, Schlüter-Brust KU, Eysel P (2010). "The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee". Dtsch Arztebl Int. 107 (9): 152–62. doi:10.3238/arztebl.2010.0152. PMC 2841860. PMID 20305774.
  28. Bai HX, Giefer M, Patel M, Orabi AI, Husain SZ (2012). "The association of primary hyperparathyroidism with pancreatitis". J. Clin. Gastroenterol. 46 (8): 656–61. doi:10.1097/MCG.0b013e31825c446c. PMC 4428665. PMID 22874807.
  29. 29.0 29.1 29.2 29.3 29.4 Kumar, Vinay (2013). Robbins basic pathology. Philadelphia, PA: Elsevier/Saunders. p. 736-737. ISBN 9781437717815.
  30. Wieneke JA, Smith A (2008). "Parathyroid adenoma". Head Neck Pathol. 2 (4): 305–8. doi:10.1007/s12105-008-0088-8. PMC 2807581. PMID 20614300.
  31. Goeddel DV, Yansura DG, Caruthers MH (1977). "Binding of synthetic lactose operator DNAs to lactose represessors". Proc. Natl. Acad. Sci. U.S.A. 74 (8): 3292–6. PMC 431535. PMID 333432.
  32. Lila AR, Sarathi V, Jagtap V, Bandgar T, Menon PS, Shah NS (2012). "Renal manifestations of primary hyperparathyroidism". Indian J Endocrinol Metab. 16 (2): 258–62. doi:10.4103/2230-8210.93745. PMC 3313745. PMID 22470864.
  33. Gui X, Miao L, Cai H, Xiao Y, Zhang D, Wang J, Meng F (2014). "[Primary hyperparathyroidism with metastatic pulmonary calcification: a case report and review of literature]". Zhonghua Jie He He Hu Xi Za Zhi (in Chinese). 37 (5): 343–6. PMID 25011508.

Template:WH Template:WS