Transforming growth factor, beta 3: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Transforming growth factor beta-3''' is a [[protein]] that in humans is encoded by the ''TGFB3'' [[gene]].<ref name="pmid16549496">{{cite journal | vauthors = Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M, Woodley DT, Li W | title = A "traffic control" role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing | journal = The Journal of Cell Biology | volume = 172 | issue = 7 | pages = 1093–105 | date = Mar 2006 | pmid = 16549496 | pmc = 2063766 | doi = 10.1083/jcb.200507111 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: TGFB3 transforming growth factor, beta 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7043| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
It is a type of protein, known as a [[cytokine]], which is involved in [[cell differentiation]], [[embryogenesis]] and [[developmental biology|development]]. It belongs to a large family of cytokines called the [[Transforming growth factor beta superfamily]], which includes the [[TGF beta|TGF-β family]], [[Bone morphogenetic protein]]s (BMPs), [[growth and differentiation factor]]s (GDFs), [[inhibins]] and [[activin]]s.<ref name = herpin>{{cite journal | vauthors = Herpin A, Lelong C, Favrel P | title = Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans | journal = Developmental and Comparative Immunology | volume = 28 | issue = 5 | pages = 461–85 | date = May 2004 | pmid = 15062644 | doi = 10.1016/j.dci.2003.09.007 }}</ref>
{{GNF_Protein_box
| image = PBB_Protein_TGFB3_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1ktz.
| PDB = {{PDB2|1ktz}}, {{PDB2|1tgj}}, {{PDB2|1tgk}}
| Name = Transforming growth factor, beta 3
| HGNCid = 11769
| Symbol = TGFB3
| AltSymbols =; ARVD; FLJ16571; TGF-beta3
| OMIM = 190230
| ECnumber = 
| Homologene = 2433
| MGIid = 98727
| GeneAtlas_image1 = PBB_GE_TGFB3_209747_at_tn.png
| Function = {{GNF_GO|id=GO:0005160 |text = transforming growth factor beta receptor binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008083 |text = growth factor activity}}
| Component =
| Process = {{GNF_GO|id=GO:0000074 |text = regulation of progression through cell cycle}} {{GNF_GO|id=GO:0001701 |text = in utero embryonic development}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007267 |text = cell-cell signaling}} {{GNF_GO|id=GO:0008283 |text = cell proliferation}} {{GNF_GO|id=GO:0008285 |text = negative regulation of cell proliferation}} {{GNF_GO|id=GO:0009790 |text = embryonic development}} {{GNF_GO|id=GO:0009887 |text = organ morphogenesis}} {{GNF_GO|id=GO:0016049 |text = cell growth}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 7043
    | Hs_Ensembl = ENSG00000119699
    | Hs_RefseqProtein = NP_003230
    | Hs_RefseqmRNA = NM_003239
    | Hs_GenLoc_db =
    | Hs_GenLoc_chr = 14
    | Hs_GenLoc_start = 75494195
    | Hs_GenLoc_end = 75517242
    | Hs_Uniprot = P10600
    | Mm_EntrezGene = 21809
    | Mm_Ensembl = ENSMUSG00000021253
    | Mm_RefseqmRNA = XM_994378
    | Mm_RefseqProtein = XP_999472
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 12
    | Mm_GenLoc_start = 86945904
    | Mm_GenLoc_end = 86968101
    | Mm_Uniprot = Q3TRQ9
  }}
}}
'''Transforming growth factor, beta 3''', also known as '''TGFB3''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: TGFB3 transforming growth factor, beta 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7043| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
TGF-β3 is believed to regulate molecules involved in [[cell adhesion|cellular adhesion]] and [[extracellular matrix]] (ECM) formation during the process of [[palate]] development.  Without TGF-β3, mammals develop a deformity known as a [[cleft palate]].<ref>{{cite journal | vauthors = Taya Y, O'Kane S, Ferguson MW | title = Pathogenesis of cleft palate in TGF-beta3 knockout mice | journal = Development | volume = 126 | issue = 17 | pages = 3869–79 | date = Sep 1999 | pmid = 10433915 }}</ref><ref>{{cite journal | vauthors = Dudas M, Nagy A, Laping NJ, Moustakas A, Kaartinen V | title = Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway | journal = Developmental Biology | volume = 266 | issue = 1 | pages = 96–108 | date = Feb 2004 | pmid = 14729481 | doi = 10.1016/j.ydbio.2003.10.007 }}</ref> This is caused by failure of [[epithelial cell]]s in both sides of the developing palate to fuse. TGF-β3 also plays an essential role in controlling the development of [[lung]]s in mammals, by also regulating cell adhesion and ECM formation in this tissue,<ref>{{cite journal | vauthors = Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J | title = Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction | journal = Nature Genetics | volume = 11 | issue = 4 | pages = 415–21 | date = Dec 1995 | pmid = 7493022 | doi = 10.1038/ng1295-415 }}</ref> and controls wound healing by regulating the movements of [[Epidermis (skin)|epidermal]] and [[dermis|dermal]] cells in injured skin.<ref name="pmid16549496"/>
{{PBB_Summary
| section_title =  
| summary_text =  
}}


==References==
== Interactions ==
{{reflist|2}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal  | author=Kalluri R, Neilson EG |title=Epithelial-mesenchymal transition and its implications for fibrosis. |journal=J. Clin. Invest. |volume=112 |issue= 12 |pages= 1776-84 |year= 2004 |pmid= 14679171 |doi= 10.1172/JCI200320530 }}
*{{cite journal  | author=Arrick BA, Lee AL, Grendell RL, Derynck R |title=Inhibition of translation of transforming growth factor-beta 3 mRNA by its 5' untranslated region. |journal=Mol. Cell. Biol. |volume=11 |issue= 9 |pages= 4306-13 |year= 1991 |pmid= 1875922 |doi=  }}
*{{cite journal  | author=ten Dijke P, Hansen P, Iwata KK, ''et al.'' |title=Identification of another member of the transforming growth factor type beta gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 13 |pages= 4715-9 |year= 1988 |pmid= 3164476 |doi=  }}
*{{cite journal  | author=Derynck R, Lindquist PB, Lee A, ''et al.'' |title=A new type of transforming growth factor-beta, TGF-beta 3. |journal=EMBO J. |volume=7 |issue= 12 |pages= 3737-43 |year= 1989 |pmid= 3208746 |doi=  }}
*{{cite journal  | author=Barton DE, Foellmer BE, Du J, ''et al.'' |title=Chromosomal mapping of genes for transforming growth factors beta 2 and beta 3 in man and mouse: dispersion of TGF-beta gene family. |journal=Oncogene Res. |volume=3 |issue= 4 |pages= 323-31 |year= 1989 |pmid= 3226728 |doi=  }}
*{{cite journal  | author=Kaartinen V, Voncken JW, Shuler C, ''et al.'' |title=Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. |journal=Nat. Genet. |volume=11 |issue= 4 |pages= 415-21 |year= 1996 |pmid= 7493022 |doi= 10.1038/ng1295-415 }}
*{{cite journal  | author=Nishida K, Sotozono C, Adachi W, ''et al.'' |title=Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea. |journal=Curr. Eye Res. |volume=14 |issue= 3 |pages= 235-41 |year= 1995 |pmid= 7796607 |doi=  }}
*{{cite journal  | author=Lin HY, Moustakas A, Knaus P, ''et al.'' |title=The soluble exoplasmic domain of the type II transforming growth factor (TGF)-beta receptor. A heterogeneously glycosylated protein with high affinity and selectivity for TGF-beta ligands. |journal=J. Biol. Chem. |volume=270 |issue= 6 |pages= 2747-54 |year= 1995 |pmid= 7852346 |doi=  }}
*{{cite journal  | author=Rampazzo A, Nava A, Danieli GA, ''et al.'' |title=The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. |journal=Hum. Mol. Genet. |volume=3 |issue= 6 |pages= 959-62 |year= 1994 |pmid= 7951245 |doi=  }}
*{{cite journal  | author=Zhao Y, Chegini N, Flanders KC |title=Human fallopian tube expresses transforming growth factor (TGF beta) isoforms, TGF beta type I-III receptor messenger ribonucleic acid and protein, and contains [125I]TGF beta-binding sites. |journal=J. Clin. Endocrinol. Metab. |volume=79 |issue= 4 |pages= 1177-84 |year= 1994 |pmid= 7962292 |doi=  }}
*{{cite journal  | author=Hildebrand A, Romarís M, Rasmussen LM, ''et al.'' |title=Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. |journal=Biochem. J. |volume=302 ( Pt 2) |issue=  |pages= 527-34 |year= 1994 |pmid= 8093006 |doi=  }}
*{{cite journal  | author=López-Casillas F, Payne HM, Andres JL, Massagué J |title=Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. |journal=J. Cell Biol. |volume=124 |issue= 4 |pages= 557-68 |year= 1994 |pmid= 8106553 |doi=  }}
*{{cite journal  | author=Mittl PR, Priestle JP, Cox DA, ''et al.'' |title=The crystal structure of TGF-beta 3 and comparison to TGF-beta 2: implications for receptor binding. |journal=Protein Sci. |volume=5 |issue= 7 |pages= 1261-71 |year= 1997 |pmid= 8819159 |doi=  }}
*{{cite journal  | author=Ambros RA, Kallakury BV, Malfetano JH, Mihm MC |title=Cytokine, cell adhesion receptor, and tumor suppressor gene expression in vulvar squamous carcinoma: correlation with prominent fibromyxoid stromal response. |journal=Int. J. Gynecol. Pathol. |volume=15 |issue= 4 |pages= 320-5 |year= 1997 |pmid= 8886879 |doi=  }}
*{{cite journal  | author=Djonov V, Ball RK, Graf S, ''et al.'' |title=Transforming growth factor-beta 3 is expressed in nondividing basal epithelial cells in normal human prostate and benign prostatic hyperplasia, and is no longer detectable in prostate carcinoma. |journal=Prostate |volume=31 |issue= 2 |pages= 103-9 |year= 1997 |pmid= 9140123 |doi=  }}
*{{cite journal  | author=Jin L, Qian X, Kulig E, ''et al.'' |title=Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. |journal=Am. J. Pathol. |volume=151 |issue= 2 |pages= 509-19 |year= 1997 |pmid= 9250163 |doi=  }}
*{{cite journal  | author=Lidral AC, Romitti PA, Basart AM, ''et al.'' |title=Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. |journal=Am. J. Hum. Genet. |volume=63 |issue= 2 |pages= 557-68 |year= 1998 |pmid= 9683588 |doi=  }}
*{{cite journal  | author=Barbara NP, Wrana JL, Letarte M |title=Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. |journal=J. Biol. Chem. |volume=274 |issue= 2 |pages= 584-94 |year= 1999 |pmid= 9872992 |doi=  }}
*{{cite journal  | author=Lux A, Attisano L, Marchuk DA |title=Assignment of transforming growth factor beta1 and beta3 and a third new ligand to the type I receptor ALK-1. |journal=J. Biol. Chem. |volume=274 |issue= 15 |pages= 9984-92 |year= 1999 |pmid= 10187774 |doi=  }}
*{{cite journal  | author=Mori T, Kawara S, Shinozaki M, ''et al.'' |title=Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. |journal=J. Cell. Physiol. |volume=181 |issue= 1 |pages= 153-9 |year= 1999 |pmid= 10457363 |doi= 10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>3.0.CO;2-K }}
}}
{{refend}}


{{protein-stub}}
Transforming growth factor, beta 3 has been shown to [[Protein-protein interaction|interact]] with [[TGF beta receptor 2]].<ref name=pmid12729750>{{cite journal | vauthors = De Crescenzo G, Pham PL, Durocher Y, O'Connor-McCourt MD | title = Transforming growth factor-beta (TGF-beta) binding to the extracellular domain of the type II TGF-beta receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding | journal = Journal of Molecular Biology | volume = 328 | issue = 5 | pages = 1173–83 | date = May 2003 | pmid = 12729750 | doi = 10.1016/S0022-2836(03)00360-7 }}</ref><ref name=pmid11850637>{{cite journal | vauthors = Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP | title = Crystal structure of the human TbetaR2 ectodomain--TGF-beta3 complex | journal = Nature Structural Biology | volume = 9 | issue = 3 | pages = 203–8 | date = Mar 2002 | pmid = 11850637 | doi = 10.1038/nsb766 }}</ref><ref name=pmid9872992>{{cite journal | vauthors = Barbara NP, Wrana JL, Letarte M | title = Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily | journal = The Journal of Biological Chemistry | volume = 274 | issue = 2 | pages = 584–94 | date = Jan 1999 | pmid = 9872992 | doi = 10.1074/jbc.274.2.584 }}</ref><ref name=pmid11157754>{{cite journal | vauthors = Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W, Knaus P | title = Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor | journal = The EMBO Journal | volume = 20 | issue = 3 | pages = 480–90 | date = Feb 2001 | pmid = 11157754 | pmc = 133482 | doi = 10.1093/emboj/20.3.480 }}</ref>
 
==Clinical research==
 
After successful phase I/II [[clinical trial|trials]],<ref>{{cite journal | vauthors = Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K, Taylor L, Chantrey J, Mason T, James G, Laverty H, Occleston NL, Sattar A, Ludlow A, O'Kane S | title = Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies | journal = Lancet | volume = 373 | issue = 9671 | pages = 1264–74 | date = Apr 2009 | pmid = 19362676 | doi = 10.1016/S0140-6736(09)60322-6 | url = http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(09)60322-6/abstract}}</ref> human recombinant TGF-β3 ('''Avotermin''', planned trade name '''Juvista''') failed in Phase III trials.<ref>[http://www.thepharmaletter.com/file/102058/renovo-shares-plummet-75-as-scar-revision-product-juvista-fails-to-meet-study-endpoints.html Renovo shares plummet 75% as scar revision product Juvista fails to meet study endpoints], 14 February 2011</ref>
 
== References ==
{{Reflist}}
 
== Further reading ==
{{refbegin|35em}}
* {{cite journal | vauthors = Kalluri R, Neilson EG | title = Epithelial-mesenchymal transition and its implications for fibrosis | journal = The Journal of Clinical Investigation | volume = 112 | issue = 12 | pages = 1776–84 | date = Dec 2003 | pmid = 14679171 | pmc = 297008 | doi = 10.1172/JCI20530 }}
* {{cite journal | vauthors = Arrick BA, Lee AL, Grendell RL, Derynck R | title = Inhibition of translation of transforming growth factor-beta 3 mRNA by its 5' untranslated region | journal = Molecular and Cellular Biology | volume = 11 | issue = 9 | pages = 4306–13 | date = Sep 1991 | pmid = 1875922 | pmc = 361291 | doi =  10.1128/mcb.11.9.4306}}
* {{cite journal | vauthors = ten Dijke P, Hansen P, Iwata KK, Pieler C, Foulkes JG | title = Identification of another member of the transforming growth factor type beta gene family | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 85 | issue = 13 | pages = 4715–9 | date = Jul 1988 | pmid = 3164476 | pmc = 280506 | doi = 10.1073/pnas.85.13.4715 }}
* {{cite journal | vauthors = Derynck R, Lindquist PB, Lee A, Wen D, Tamm J, Graycar JL, Rhee L, Mason AJ, Miller DA, Coffey RJ | title = A new type of transforming growth factor-beta, TGF-beta 3 | journal = The EMBO Journal | volume = 7 | issue = 12 | pages = 3737–43 | date = Dec 1988 | pmid = 3208746 | pmc = 454948 | doi =  }}
* {{cite journal | vauthors = Barton DE, Foellmer BE, Du J, Tamm J, Derynck R, Francke U | title = Chromosomal mapping of genes for transforming growth factors beta 2 and beta 3 in man and mouse: dispersion of TGF-beta gene family | journal = Oncogene Research | volume = 3 | issue = 4 | pages = 323–31 | year = 1989 | pmid = 3226728 | doi =  }}
* {{cite journal | vauthors = Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J | title = Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction | journal = Nature Genetics | volume = 11 | issue = 4 | pages = 415–21 | date = Dec 1995 | pmid = 7493022 | doi = 10.1038/ng1295-415 }}
* {{cite journal | vauthors = Nishida K, Sotozono C, Adachi W, Yamamoto S, Yokoi N, Kinoshita S | title = Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea | journal = Current Eye Research | volume = 14 | issue = 3 | pages = 235–41 | date = Mar 1995 | pmid = 7796607 | doi = 10.3109/02713689509033520 }}
* {{cite journal | vauthors = Lin HY, Moustakas A, Knaus P, Wells RG, Henis YI, Lodish HF | title = The soluble exoplasmic domain of the type II transforming growth factor (TGF)-beta receptor. A heterogeneously glycosylated protein with high affinity and selectivity for TGF-beta ligands | journal = The Journal of Biological Chemistry | volume = 270 | issue = 6 | pages = 2747–54 | date = Feb 1995 | pmid = 7852346 | doi = 10.1074/jbc.270.6.2747 }}
* {{cite journal | vauthors = Rampazzo A, Nava A, Danieli GA, Buja G, Daliento L, Fasoli G, Scognamiglio R, Corrado D, Thiene G | title = The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24 | journal = Human Molecular Genetics | volume = 3 | issue = 6 | pages = 959–62 | date = Jun 1994 | pmid = 7951245 | doi = 10.1093/hmg/3.6.959 }}
* {{cite journal | vauthors = Zhao Y, Chegini N, Flanders KC | title = Human fallopian tube expresses transforming growth factor (TGF beta) isoforms, TGF beta type I-III receptor messenger ribonucleic acid and protein, and contains [125I]TGF beta-binding sites | journal = The Journal of Clinical Endocrinology and Metabolism | volume = 79 | issue = 4 | pages = 1177–84 | date = Oct 1994 | pmid = 7962292 | doi = 10.1210/jc.79.4.1177 }}
* {{cite journal | vauthors = Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E | title = Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta | journal = The Biochemical Journal | volume = 302 | issue = 2 | pages = 527–34 | date = Sep 1994 | pmid = 8093006 | pmc = 1137259 | doi =  10.1042/bj3020527}}
* {{cite journal | vauthors = López-Casillas F, Payne HM, Andres JL, Massagué J | title = Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites | journal = The Journal of Cell Biology | volume = 124 | issue = 4 | pages = 557–68 | date = Feb 1994 | pmid = 8106553 | pmc = 2119924 | doi = 10.1083/jcb.124.4.557 }}
* {{cite journal | vauthors = Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, Grütter MG | title = The crystal structure of TGF-beta 3 and comparison to TGF-beta 2: implications for receptor binding | journal = Protein Science | volume = 5 | issue = 7 | pages = 1261–71 | date = Jul 1996 | pmid = 8819159 | pmc = 2143453 | doi = 10.1002/pro.5560050705 }}
* {{cite journal | vauthors = Ambros RA, Kallakury BV, Malfetano JH, Mihm MC | title = Cytokine, cell adhesion receptor, and tumor suppressor gene expression in vulvar squamous carcinoma: correlation with prominent fibromyxoid stromal response | journal = International Journal of Gynecological Pathology | volume = 15 | issue = 4 | pages = 320–5 | date = Oct 1996 | pmid = 8886879 | doi = 10.1097/00004347-199610000-00004 }}
* {{cite journal | vauthors = Djonov V, Ball RK, Graf S, Mottaz AE, Arnold AM, Flanders K, Studer UE, Merz VW | title = Transforming growth factor-beta 3 is expressed in nondividing basal epithelial cells in normal human prostate and benign prostatic hyperplasia, and is no longer detectable in prostate carcinoma | journal = The Prostate | volume = 31 | issue = 2 | pages = 103–9 | date = May 1997 | pmid = 9140123 | doi = 10.1002/(SICI)1097-0045(19970501)31:2<103::AID-PROS5>3.0.CO;2-O }}
* {{cite journal | vauthors = Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Young WF, Lloyd RV | title = Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries | journal = The American Journal of Pathology | volume = 151 | issue = 2 | pages = 509–19 | date = Aug 1997 | pmid = 9250163 | pmc = 1858020 | doi =  }}
* {{cite journal | vauthors = Lidral AC, Romitti PA, Basart AM, Doetschman T, Leysens NJ, Daack-Hirsch S, Semina EV, Johnson LR, Machida J, Burds A, Parnell TJ, Rubenstein JL, Murray JC | title = Association of MSX1 and TGFB3 with nonsyndromic clefting in humans | journal = American Journal of Human Genetics | volume = 63 | issue = 2 | pages = 557–68 | date = Aug 1998 | pmid = 9683588 | pmc = 1377298 | doi = 10.1086/301956 }}
* {{cite journal | vauthors = Barbara NP, Wrana JL, Letarte M | title = Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily | journal = The Journal of Biological Chemistry | volume = 274 | issue = 2 | pages = 584–94 | date = Jan 1999 | pmid = 9872992 | doi = 10.1074/jbc.274.2.584 }}
* {{cite journal | vauthors = Lux A, Attisano L, Marchuk DA | title = Assignment of transforming growth factor beta1 and beta3 and a third new ligand to the type I receptor ALK-1 | journal = The Journal of Biological Chemistry | volume = 274 | issue = 15 | pages = 9984–92 | date = Apr 1999 | pmid = 10187774 | doi = 10.1074/jbc.274.15.9984 }}
* {{cite journal | vauthors = Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K | title = Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model | journal = Journal of Cellular Physiology | volume = 181 | issue = 1 | pages = 153–9 | date = Oct 1999 | pmid = 10457363 | doi = 10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>3.0.CO;2-K }}
{{Refend}}
 
== External links ==
* [https://www.ncbi.nlm.nih.gov/books/NBK1131/  GeneReviews/NCBI/NIH/UW entry on Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, Autosomal Dominant]
* [https://www.ncbi.nlm.nih.gov/omim/604772,605676,601214,107970,125645,125647,125671,173325,180902,190230,600996,602086,602087,602861,604400,604401,607450,609040,609160,610193,610476,611528,612048,107970,125645,125647,125671,173325,180902,190230,600996,602086,602087,602861,604400,604401,607450,609040,609160,610193,610476,611528,612048  OMIM entries on Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, Autosomal Dominant]
 
{{PDB Gallery|geneid=7043}}
 
{{TGF beta signaling}}
{{Growth factors}}
{{TGFβ receptor superfamily modulators}}
 
[[Category:Proteins]]
[[Category:TGFβ domain]]

Latest revision as of 04:40, 17 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Transforming growth factor beta-3 is a protein that in humans is encoded by the TGFB3 gene.[1][2]

It is a type of protein, known as a cytokine, which is involved in cell differentiation, embryogenesis and development. It belongs to a large family of cytokines called the Transforming growth factor beta superfamily, which includes the TGF-β family, Bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs), inhibins and activins.[3]

TGF-β3 is believed to regulate molecules involved in cellular adhesion and extracellular matrix (ECM) formation during the process of palate development. Without TGF-β3, mammals develop a deformity known as a cleft palate.[4][5] This is caused by failure of epithelial cells in both sides of the developing palate to fuse. TGF-β3 also plays an essential role in controlling the development of lungs in mammals, by also regulating cell adhesion and ECM formation in this tissue,[6] and controls wound healing by regulating the movements of epidermal and dermal cells in injured skin.[1]

Interactions

Transforming growth factor, beta 3 has been shown to interact with TGF beta receptor 2.[7][8][9][10]

Clinical research

After successful phase I/II trials,[11] human recombinant TGF-β3 (Avotermin, planned trade name Juvista) failed in Phase III trials.[12]

References

  1. 1.0 1.1 Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M, Woodley DT, Li W (Mar 2006). "A "traffic control" role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing". The Journal of Cell Biology. 172 (7): 1093–105. doi:10.1083/jcb.200507111. PMC 2063766. PMID 16549496.
  2. "Entrez Gene: TGFB3 transforming growth factor, beta 3".
  3. Herpin A, Lelong C, Favrel P (May 2004). "Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans". Developmental and Comparative Immunology. 28 (5): 461–85. doi:10.1016/j.dci.2003.09.007. PMID 15062644.
  4. Taya Y, O'Kane S, Ferguson MW (Sep 1999). "Pathogenesis of cleft palate in TGF-beta3 knockout mice". Development. 126 (17): 3869–79. PMID 10433915.
  5. Dudas M, Nagy A, Laping NJ, Moustakas A, Kaartinen V (Feb 2004). "Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway". Developmental Biology. 266 (1): 96–108. doi:10.1016/j.ydbio.2003.10.007. PMID 14729481.
  6. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (Dec 1995). "Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction". Nature Genetics. 11 (4): 415–21. doi:10.1038/ng1295-415. PMID 7493022.
  7. De Crescenzo G, Pham PL, Durocher Y, O'Connor-McCourt MD (May 2003). "Transforming growth factor-beta (TGF-beta) binding to the extracellular domain of the type II TGF-beta receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding". Journal of Molecular Biology. 328 (5): 1173–83. doi:10.1016/S0022-2836(03)00360-7. PMID 12729750.
  8. Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP (Mar 2002). "Crystal structure of the human TbetaR2 ectodomain--TGF-beta3 complex". Nature Structural Biology. 9 (3): 203–8. doi:10.1038/nsb766. PMID 11850637.
  9. Barbara NP, Wrana JL, Letarte M (Jan 1999). "Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily". The Journal of Biological Chemistry. 274 (2): 584–94. doi:10.1074/jbc.274.2.584. PMID 9872992.
  10. Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W, Knaus P (Feb 2001). "Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor". The EMBO Journal. 20 (3): 480–90. doi:10.1093/emboj/20.3.480. PMC 133482. PMID 11157754.
  11. Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K, Taylor L, Chantrey J, Mason T, James G, Laverty H, Occleston NL, Sattar A, Ludlow A, O'Kane S (Apr 2009). "Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies". Lancet. 373 (9671): 1264–74. doi:10.1016/S0140-6736(09)60322-6. PMID 19362676.
  12. Renovo shares plummet 75% as scar revision product Juvista fails to meet study endpoints, 14 February 2011

Further reading

External links