Growth hormone deficiency risk factors: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 11: Line 11:


==== '''[[Laron syndrome|Growth hormone insensitivity]]''' ====
==== '''[[Laron syndrome|Growth hormone insensitivity]]''' ====
* [[Growth hormone insensitivity syndrome|Growth hormone insensitivity]] is an absence of the effects of [[growth hormone]] despite a normal production of [[Growth hormone|GH]].<sup>[[Growth hormone deficiency causes#cite note-pmid26062520-13|[13]]]</sup>
* [[Growth hormone insensitivity syndrome|Growth hormone insensitivity]] is an absence of the effects of [[growth hormone]] despite a normal production of [[Growth hormone|GH]].<ref>[[Growth hormone deficiency causes#cite note-pmid26062520-13|[13]]]<ref>
* It is caused by [[mutations]] in the [[growth hormone receptor]] [[gene]] which affects the GH-binding of the [[receptor]].
* It is caused by [[mutations]] in the [[growth hormone receptor]] [[gene]] which affects the GH-binding of the [[receptor]].
* Its severity correlates to [[IGF-I]] and [[Insulin-like growth factor-binding protein 1|insulin-like growth factor-binding protein]] 3 (IGFBP-3) levels.
* Its severity correlates to [[IGF-I]] and [[Insulin-like growth factor-binding protein 1|insulin-like growth factor-binding protein]] 3 (IGFBP-3) levels.


==== ''POU1F1'' gene mutations ====
==== ''POU1F1'' gene mutations ====
* It is the most common known genetic cause of the combined [[Pituitary gland|pituitary]] hormone deficiency.<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid26608600-4|[4]]]</sup>
* It is the most common known genetic cause of the combined [[Pituitary gland|pituitary]] hormone deficiency.<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid26608600-4|[4]]]<ref>
* It is responsible for [[Pituitary gland|pituitary]]-specific [[Transcription (genetics)|transcription]] of [[Gene|genes]] for GH, [[prolactin]], [[thyrotropin]], and the [[Growth hormone releasing hormone|growth hormone-releasing hormone]] ([[GHRH]]) receptor.<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid1977085-5|[5]]]</sup>
* It is responsible for [[Pituitary gland|pituitary]]-specific [[Transcription (genetics)|transcription]] of [[Gene|genes]] for GH, [[prolactin]], [[thyrotropin]], and the [[Growth hormone releasing hormone|growth hormone-releasing hormone]] ([[GHRH]]) receptor.<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid1977085-5|[5]]]<ref>
* ''PROP1'' [[mutations]] result in failure to activate ''POU1F1/Pit1'' [[gene expression]] and probably cause [[Pituitary gland|pituitary]] hypoplasia.<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid9462743-6|[6]]]</sup>
* ''PROP1'' [[mutations]] result in failure to activate ''POU1F1/Pit1'' [[gene expression]] and probably cause [[Pituitary gland|pituitary]] hypoplasia.<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid9462743-6|[6]]]<ref>


==== GH1 gene mutations ====
==== GH1 gene mutations ====
Line 25: Line 25:


==== Syndrome of bioinactive GH ====
==== Syndrome of bioinactive GH ====
* Bioinactive GH has the main symptoms and signs of isolated GHD with normal basal GH levels and low [[Insulin-like growth factor 1|insulin-like growth factor I]] concentrations.<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid15713716-7|[7]]]</sup>
* Bioinactive GH has the main symptoms and signs of isolated GHD with normal basal GH levels and low [[Insulin-like growth factor 1|insulin-like growth factor I]] concentrations.<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid15713716-7|[7]]]<ref>


==== '''GH receptor signal [[transduction]]''' ====
==== '''GH receptor signal [[transduction]]''' ====
* It is essential for normal signaling of the GH receptor. Mutations in the gene encoding signal transducer decrease the response of receptors to [[Growth hormone|GH]].<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid17389811-8|[8]]]</sup>
* It is essential for normal signaling of the GH receptor. Mutations in the gene encoding signal transducer decrease the response of receptors to [[Growth hormone|GH]].<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid17389811-8|[8]]]<ref>


==== [[Insulin-like growth factor-I|IGF-I]] gene mutations ====
==== [[Insulin-like growth factor-I|IGF-I]] gene mutations ====
* Mutations in the gene encoding [[Insulin-like growth factor-I|IGF-I]] cause a unique syndrome of GHD.<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid24243634-9|[9]]]</sup><sup>[[Growth hormone deficiency pathophysiology#cite note-pmid22309212-11|[11]]]</sup>
* Mutations in the gene encoding [[Insulin-like growth factor-I|IGF-I]] cause a unique syndrome of GHD.<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid24243634-9|[9]]]<ref><ref>[[Growth hormone deficiency pathophysiology#cite note-pmid22309212-11|[11]]]<ref>
* Patients with [[Insulin-like growth factor-I|IGF-I]] [[Gene mutation|gene mutations]] have prenatal growth failure, [[microcephaly]], significant [[Neurocognitive deficit|neurocognitive deficits]], and [[sensorineural hearing loss]].
* Patients with [[Insulin-like growth factor-I|IGF-I]] [[Gene mutation|gene mutations]] have prenatal growth failure, [[microcephaly]], significant [[Neurocognitive deficit|neurocognitive deficits]], and [[sensorineural hearing loss]].


==== '''Defective stabilization of circulating [[Insulin-like growth factor-I|IGF-I]]''' ====
==== '''Defective stabilization of circulating [[Insulin-like growth factor-I|IGF-I]]''' ====
* Acid-labile subunit is important for the stabilization of the [[Insulin-like growth factor-I|IGF-I]].
* Acid-labile subunit is important for the stabilization of the [[Insulin-like growth factor-I|IGF-I]].
* [[Mutations]] in the [[gene]] coding for it causes less stable and subsequently less effect.<sup>[[Growth hormone deficiency pathophysiology#cite note-pmid19729943-10|[10]]]</sup>
* [[Mutations]] in the [[gene]] coding for it causes less stable and subsequently less effect.<ref>[[Growth hormone deficiency pathophysiology#cite note-pmid19729943-10|[10]]]<ref>


==References==
==References==

Revision as of 21:49, 11 October 2017

Growth hormone deficiency Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Growth hormone deficiency from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Growth hormone deficiency risk factors On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Growth hormone deficiency risk factors

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Growth hormone deficiency risk factors

CDC on Growth hormone deficiency risk factors

Growth hormone deficiency risk factors in the news

Blogs on Growth hormone deficiency risk factors

Directions to Hospitals Treating Growth hormone deficiency

Risk calculators and risk factors for Growth hormone deficiency risk factors

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

The risk factors for growth hormone deficiency is due to the mutations involving the POU1F1 gene, GH1 gene, IGF-I gene. GH receptor signal transduction, syndrome of bioinactive GH and growth hormone insensitivity.

Risk Factors

Genetics

Growth hormone insensitivity

POU1F1 gene mutations

GH1 gene mutations

Syndrome of bioinactive GH

  • Bioinactive GH has the main symptoms and signs of isolated GHD with normal basal GH levels and low insulin-like growth factor I concentrations.<ref>[7]<ref>

GH receptor signal transduction

  • It is essential for normal signaling of the GH receptor. Mutations in the gene encoding signal transducer decrease the response of receptors to GH.<ref>[8]<ref>

IGF-I gene mutations

Defective stabilization of circulating IGF-I

  • Acid-labile subunit is important for the stabilization of the IGF-I.
  • Mutations in the gene coding for it causes less stable and subsequently less effect.<ref>[10]<ref>

References

Template:WH Template:WS