This gene encodes a protein that is a transmembrane receptor for growth hormone.[3][4] Binding of growth hormone to the receptor leads to reorientation of a pre-assembled receptor dimer dimerization (the receptor may however also exist as monomers on the cell surface [5]) and the activation of an intra- and intercellular signal transduction pathway leading to growth.[6] A common alternate allele of this gene, called GHRd3, lacks exon three and has been well characterized. Mutations in this gene have been associated with Laron syndrome, also known as the growth hormone insensitivity syndrome (GHIS), a disorder characterized by short stature (proportional dwarfism). Other splice variants, including one encoding a soluble form of the protein (GHRtr), have been observed but have not been thoroughly characterized.[1] Laron mice (that is mice genetically engineered to carry defective Ghr), have a dramatic reduction in body mass (only reaching 50% of the weight of normal siblings), and also show a ~40% increase in lifespan.
The GHR gene is used in animals as a nuclear DNA phylogenetic marker.[2] The exon 10 has first been experienced to explore the phylogeny of the major groups of Rodentia.[15][16][17]
GHR has also proven useful at lower taxonomic levels, e.g., in octodontoid,[18][7] arvicoline,[19] muroid,[20][21] murine,[22] and peromyscine [23] rodents, in arctoid [24] and felid[25] carnivores, and in dermopterans.[26]
Note that the GHR intron 9 has also been used to investigate the mustelid[27] and hyaenid [28]carnivores phylogenetics.
Antagonists
Growth hormone receptor antagonists such as pegvisomant (trade name Somavert) are used in the treatment of acromegaly.[29] They are used if the tumor of the pituitary gland causing the acromegaly cannot be controlled with surgery or radiation, and the use of somatostatin analogues is unsuccessful. Pegvisomant is delivered as a powder that is mixed with water and injected under the skin.[30]
↑Dehkhoda F, Lee CM, Medina J, Brooks AJ (13 February 2018). "The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects". Frontiers in Endocrinology. 9: 35. doi:10.3389/fendo.2018.00035. PMID29487568.
↑Brooks AJ, Waters MJ (September 2010). "The growth hormone receptor: mechanism of activation and clinical implications". Nature Reviews. Endocrinology. 6 (9): 515–25. doi:10.1038/nrendo.2010.123. PMID20664532.
↑González L, Curto LM, Miquet JG, Bartke A, Turyn D, Sotelo AI (April 2007). "Differential regulation of membrane associated-growth hormone binding protein (MA-GHBP) and growth hormone receptor (GHR) expression by growth hormone (GH) in mouse liver". Growth Hormone & IGF Research. 17 (2): 104–12. doi:10.1016/j.ghir.2006.12.002. PMID17321774.
↑Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, Gomez GA, Alexandrov K, Wilson IA, Doxastakis M, Mark AE, Waters MJ (May 2014). "Mechanism of activation of protein kinase JAK2 by the growth hormone receptor". Science. 344 (6185): 1249783. doi:10.1126/science.1249783. PMID24833397.
↑Stofega MR, Herrington J, Billestrup N, Carter-Su C (September 2000). "Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B". Molecular Endocrinology. 14 (9): 1338–50. doi:10.1210/me.14.9.1338. PMID10976913.
↑Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (June 1998). "Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins". The Journal of Biological Chemistry. 273 (26): 15906–12. doi:10.1074/jbc.273.26.15906. PMID9632636.
↑Frank SJ, Yi W, Zhao Y, Goldsmith JF, Gilliland G, Jiang J, Sakai I, Kraft AS (June 1995). "Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor". The Journal of Biological Chemistry. 270 (24): 14776–85. doi:10.1074/jbc.270.24.14776. PMID7540178.
↑VanderKuur JA, Wang X, Zhang L, Campbell GS, Allevato G, Billestrup N, Norstedt G, Carter-Su C (August 1994). "Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase". The Journal of Biological Chemistry. 269 (34): 21709–17. PMID8063815.
↑Hellgren G, Jansson JO, Carlsson LM, Carlsson B (June 1999). "The growth hormone receptor associates with Jak1, Jak2 and Tyk2 in human liver". Growth Hormone & IGF Research. 9 (3): 212–8. doi:10.1054/ghir.1999.0111. PMID10502458.
↑ 14.014.1Ram PA, Waxman DJ (December 1999). "SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms". The Journal of Biological Chemistry. 274 (50): 35553–61. doi:10.1074/jbc.274.50.35553. PMID10585430.
↑Adkins RM, Gelke EL, Rowe D, Honeycutt RL (May 2001). "Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes". Molecular Biology and Evolution. 18 (5): 777–91. doi:10.1093/oxfordjournals.molbev.a003860. PMID11319262.
↑Adkins RM, Walton AH, Honeycutt RL (March 2003). "Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes". Molecular Phylogenetics and Evolution. 26 (3): 409–20. doi:10.1016/S1055-7903(02)00304-4. PMID12644400.
↑Honeycutt RL, Rowe DL, Gallardo MH (March 2003). "Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae". Molecular Phylogenetics and Evolution. 26 (3): 476–89. doi:10.1016/S1055-7903(02)00368-8. PMID12644405.
↑Steppan S, Adkins R, Anderson J (August 2004). "Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes". Systematic Biology. 53 (4): 533–53. doi:10.1080/10635150490468701. PMID15371245.
↑Rowe KC, Reno ML, Richmond DM, Adkins RM, Steppan SJ (April 2008). "Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae)". Molecular Phylogenetics and Evolution. 47 (1): 84–101. doi:10.1016/j.ympev.2008.01.001. PMID18313945.
↑Miller J. R.; Engstrom M. D. (2008). "The relationships of major lineages within peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal". J. Mammal. 89 (5): 1279–1295. doi:10.1644/07-MAMM-A-195.1.
↑Fulton TL, Strobeck C (October 2006). "Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets". Molecular Phylogenetics and Evolution. 41 (1): 165–81. doi:10.1016/j.ympev.2006.05.025. PMID16814570.
↑Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ (January 2006). "The late Miocene radiation of modern Felidae: a genetic assessment". Science. 311 (5757): 73–7. doi:10.1126/science.1122277. PMID16400146.
↑Janecka JE, Helgen KM, Lim NT, Baba M, Izawa M, Murphy WJ (November 2008). "Evidence for multiple species of Sunda colugo". Current Biology. 18 (21): R1001–2. doi:10.1016/j.cub.2008.09.005. PMID19000793.
↑Koepfli KP, Wayne RK (October 2003). "Type I STS markers are more informative than cytochrome B in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora)". Systematic Biology. 52 (5): 571–93. doi:10.1080/10635150390235368. PMID14530127.
↑Koepfli KP, Jenks SM, Eizirik E, Zahirpour T, Van Valkenburgh B, Wayne RK (March 2006). "Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix". Molecular Phylogenetics and Evolution. 38 (3): 603–20. doi:10.1016/j.ympev.2005.10.017. PMID16503281.