C3 glomerulopathy: Difference between revisions
Aditya Ganti (talk | contribs) |
Aditya Ganti (talk | contribs) |
||
Line 112: | Line 112: | ||
==Screening== | ==Screening== | ||
*There is | *There is insufficient evidence to recommend routine screening for C3 glomerulopathy. | ||
== Natural History, Complications and Prognosis== | == Natural History, Complications and Prognosis== | ||
*Common [[Complications During and Following Cardiac Catheterization and Percutaneous Coronary Intervention|complications]] of C3 [[glomerulopathy]] include [[renal failure]], [[atherosclerosis]], and [[vision loss]] | *Common [[Complications During and Following Cardiac Catheterization and Percutaneous Coronary Intervention|complications]] of C3 [[glomerulopathy]] include [[renal failure]], [[atherosclerosis]], and [[vision loss]]. | ||
*[[Prognosis]] of [[C3 glomerulopathy MRI|C3 glomerulopathy]] is generally poor | *[[Prognosis]] of [[C3 glomerulopathy MRI|C3 glomerulopathy]] is generally poor without proper treatment. | ||
*10 year [[mortality]] of [[patients]] with C3 glomerulopathy is approximately 36%. | |||
== Diagnosis == | == Diagnosis == | ||
===Diagnostic test of choice=== | ====Diagnostic test of choice==== | ||
Gold standard [[test]] of choice for [[C3 glomerulopathy MRI|C3 glomerulopathy]] is [[kidney]] [[biopsy]]. | Gold standard [[test]] of choice for [[C3 glomerulopathy MRI|C3 glomerulopathy]] is [[kidney]] [[biopsy]]. | ||
=== Symptoms === | ==== Symptoms ==== | ||
Common symptoms of [[C3 glomerulopathy MRI|C3 glomerulopathy]] may include:<ref name="pmid20301598">{{cite journal |vauthors=Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, Martín B, Smith RJH |title= |journal= |volume= |issue= |pages= |date= |pmid=20301598 |doi= |url=}}</ref><ref name="pmid27878657">{{cite journal |vauthors=Ito N, Ohashi R, Nagata M |title=C3 glomerulopathy and current dilemmas |journal=Clin. Exp. Nephrol. |volume=21 |issue=4 |pages=541–551 |date=August 2017 |pmid=27878657 |pmc=5721121 |doi=10.1007/s10157-016-1358-5 |url=}}</ref> | |||
*Foamy [[urine]] due [[proteinuria]] | |||
*[[Hematuria]] | |||
*Signs of [[renal]] [[Aortic insufficiency|insufficiency]] like general [[fatigue]] or [[malaise]] | |||
*[[Hypertension]] | |||
*Hypocomplementimia | |||
*Acquired [[lipodystrophy]] | |||
*[[Macular]] ([[Drusen]]) deposits in the [[retina]] of the [[eye]] | |||
{| class="wikitable" | |||
|+ | |||
! | |||
!DDD | |||
!C3GN | |||
|- | |||
|Mean age | |||
|14 | |||
|24 | |||
|- | |||
|ESRD | |||
|50% in 10 years | |||
|10% in 2.5 years | |||
|- | |||
|Associated conditions | |||
|Acquired [[lipodystrophy]] | |||
Type 1 DM | |||
Macular degeneration | |||
| - | |||
|- | |||
|C3 convertase dysregulation | |||
|↑↑ | |||
|↑ | |||
|- | |||
=== Laboratory Findings === | |C5 convertase dysregulation | ||
|↑ | |||
|↑↑ | |||
|- | |||
|C3NF | |||
| +++ | |||
| + | |||
|- | |||
|MAC | |||
|↑ | |||
|↑↑↑ | |||
|} | |||
==== Laboratory Findings ==== | |||
*The following [[blood]] [[tests]] need to be done in the evaluation of [[C3 glomerulopathy MRI|C3 glomerulopathy]] . | *The following [[blood]] [[tests]] need to be done in the evaluation of [[C3 glomerulopathy MRI|C3 glomerulopathy]] . | ||
Line 140: | Line 179: | ||
* [[Blood]] levels of [[Complement]] C3, [[C3 Nef]], Serum factor H, CFHR ( Complement factor H-related protein) | * [[Blood]] levels of [[Complement]] C3, [[C3 Nef]], Serum factor H, CFHR ( Complement factor H-related protein) | ||
* 24-hr [[urine]] [[protein]] analysis | * 24-hr [[urine]] [[protein]] analysis | ||
=== Physical Examination === | ==== Physical Examination ==== | ||
====Appearance of the Patient==== | =====Appearance of the Patient===== | ||
*[[Patients]] with [[C3 (complement)|C3]] [[glomerulopathy]] usually appear cachectic. | *[[Patients]] with [[C3 (complement)|C3]] [[glomerulopathy]] usually appear cachectic. | ||
====Vital Signs==== | ======Vital Signs====== | ||
* New onset [[hypertension]] | * New onset [[hypertension]] | ||
Revision as of 19:59, 31 July 2018
WikiDoc Resources for C3 glomerulopathy |
Articles |
---|
Most recent articles on C3 glomerulopathy Most cited articles on C3 glomerulopathy |
Media |
Powerpoint slides on C3 glomerulopathy |
Evidence Based Medicine |
Cochrane Collaboration on C3 glomerulopathy |
Clinical Trials |
Ongoing Trials on C3 glomerulopathy at Clinical Trials.gov Trial results on C3 glomerulopathy Clinical Trials on C3 glomerulopathy at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on C3 glomerulopathy NICE Guidance on C3 glomerulopathy
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on C3 glomerulopathy Discussion groups on C3 glomerulopathy Patient Handouts on C3 glomerulopathy Directions to Hospitals Treating C3 glomerulopathy Risk calculators and risk factors for C3 glomerulopathy
|
Healthcare Provider Resources |
Causes & Risk Factors for C3 glomerulopathy |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1], Ali Poyan Mehr, M.D. [2];Associate Editor(s)-in-Chief: Vindhya BellamKonda, M.B.B.S [3], Olufunmilola Olubukola M.D.[4]
For more information of Complement mediated glomerular disorders, Click here
Synonyms and keywords: Glomerulonephritis; C3 glomerulonephritis; dense deposit disease
Overview
C3 glomerulopathy is a complement system dysregulatory disorder resulting in abnormal activation of the alternative pathway. C3 glomerulopathy includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD). Both, C3GN and dense deposit disease are characterized by marked by C3 deposition along the capillary loop, the basement membrane, and the mesangium. Identification of C3 deposits without any concomitant immunoglobulin deposition is characteristic for diagnosing C3 glomerulopathy. The activation of the alternative pathway of the complement system can be either due to inherited, or acquired defects of the complement system. Gene mutations are the most common inherited causes while autoimmune disorders are responsible for acquired glomerulopathy.
Historical Perspective
- In 1915, William C. Gunn was first to report an association of low circulating complement levels in patients with acute infection and nephritic presentation.
- Based on the William's observations, role of complement system in inflammatory glomerulonephritis was well described.[1][2]
- In 1962, Jean Berger and Pierre Galle, Nephro-pathologists, was the first to identify dense intramembranous deposits on transmission EM [3].
- Mathew TH, Kinaid Smith P coined the term dense deposit disease (DDD).[4]
Classification
- Initially, C3 glomerulopathy was categorized as a variant of MPGN, namely MPGN type 2. [5][6]
- However in 2007, Servais A. et al described C3GN as an separate entity.
- C3 Glomerulopathy may be classified into 2 main subtypes based on the appearance of complement deposition in the glomerular basement membrane on EM:
- Dense deposit disease (DDD)
- Dense deposition of compliment in linear pattern.
- C3 Glomerulonephritis (C3GN)
- Isolated deposition of C3.
- Dense deposit disease (DDD)
Pathophysiology
- Excessive activation of the alternative complement pathway is the inciting event in the pathogenesis of C3 glomerulopathy.[7]
- Activation of alternative pathway results in excessive deposition of complement along the glomerular basement membrane.
- Pattern of compliment deposition is regulated by:[8]
- Leukocytic chemotaxis
- Cytolytic effects of C5b-9
Physiology
- Spontaneous cleavage of C3 to C3b results in activation of C3 convertase.[9]
- C3 convertase along with factor B and properdin catalyses the cascade of producing C5 convertase.
- C5 convertse cleaves 5 to C5a initiating C5b-9 ( MAC complex)
- Physiologically activation of C5 convertase is directly related to C3 convertase.
- Factors that can influence and control C3 convertase activity include
- Serum protein
- Factor H (inhibits the C3 convertase)
Pathogenesis
- Any mechanism by which C3 activity is increased leads to activation of alternate pathway activation resulting in complement deposition.[10][11]
- C3 convertase autoantibody C3 nephritic factor
- Loss of factor H
Causes
Common causes of C3 glomerulopathy include:[12]
- C3 mutations
- Mutation of Factor H (CHF)[13]
- CFH is a small glycoprotein which is produced in the liver, and circulates freely in the blood plasma .
- Primary role of factor H is to inhibit C3 convertase and thus not activating alternative complement pathway.
- Two types of mutations are of important significance
- Type 1 mutations are associated with decreased levels of CFH.
- Type 2 mutations decrease or diminish the functional activity of CHF.
- Autoantibodies against CFH. [14]
- Mutation of membrane cofactor protein ( MCP)
- MCP is a transmembrane protein, expressed by all nucleated cells and located at the cell surfaces.
- Together with Complement Factor I (CFI), MCP is required for the inactivation of C3b,
Differentiating C3 Glomerulopathy from other Diseases
Medical condition | Differentiating features |
---|---|
C3 glomerulopathy |
|
Lupus nephritis |
|
Poststreptococcal glomerulonephritis |
|
Staphylococcal associated glomerulonephritis |
|
Epidemiology and Demographics
- The prevalence of C3 glomerulopathy is approximately 3 per 100,000 individuals worldwide.[16]
- Patients of all age groups may develop C3 glomerulopathy but it commonly affects young adults and children (Dense deposit disease)
- C3 glomerulopathy affects men and women equally.
- There is no racial predilection for C3 glomerulopathy.
Risk Factors
Common risk factors in the development of C3 glomerulopathy include:
- Family history of C3 glomerulopathy
- H/O autoimmune disorders
Screening
- There is insufficient evidence to recommend routine screening for C3 glomerulopathy.
Natural History, Complications and Prognosis
- Common complications of C3 glomerulopathy include renal failure, atherosclerosis, and vision loss.
- Prognosis of C3 glomerulopathy is generally poor without proper treatment.
- 10 year mortality of patients with C3 glomerulopathy is approximately 36%.
Diagnosis
Diagnostic test of choice
Gold standard test of choice for C3 glomerulopathy is kidney biopsy.
Symptoms
Common symptoms of C3 glomerulopathy may include:[17][18]
- Foamy urine due proteinuria
- Hematuria
- Signs of renal insufficiency like general fatigue or malaise
- Hypertension
- Hypocomplementimia
- Acquired lipodystrophy
- Macular (Drusen) deposits in the retina of the eye
DDD | C3GN | |
---|---|---|
Mean age | 14 | 24 |
ESRD | 50% in 10 years | 10% in 2.5 years |
Associated conditions | Acquired lipodystrophy
Type 1 DM Macular degeneration |
- |
C3 convertase dysregulation | ↑↑ | ↑ |
C5 convertase dysregulation | ↑ | ↑↑ |
C3NF | +++ | + |
MAC | ↑ | ↑↑↑ |
Laboratory Findings
- The following blood tests need to be done in the evaluation of C3 glomerulopathy .
- CBC
- Blood glucose levels and Hemoglobin A1C
- BUN and Creatinine levels
- Blood levels of Complement C3, C3 Nef, Serum factor H, CFHR ( Complement factor H-related protein)
- 24-hr urine protein analysis
Physical Examination
Appearance of the Patient
- Patients with C3 glomerulopathy usually appear cachectic.
Vital Signs
- New onset hypertension
Skin
HEENT
- HEENT examination of patients with C3 glomerulopathy is usually normal.
Neck
- Neck examination of patients with C3 glomerulopathy is usually normal.
Lungs
- Rales may be heard
Heart
- Cardiovascular examination of patients with C3 glomerulopathy is usually normal.
Abdomen
Imaging Findings
- There are no imaging findings specific to C3 glomerulopathy.
Other Diagnostic Studies
- C3 glomerulopathy may also be diagnosed using light microscopy, immunofluorescence microscopy and electron microscopy.
- Findings on electron microscopy include mesangial proliferative glomerulonephritis, membranoproliferative glomerulonephritis and crescentic glomerulonephritis.[19]
- Immunofluorescence microscopy: C3 deposits along the Bowman's capsule, glomerular and tubular basement membranes.
- Electron microscopy findings in Dense Deposit Disease: Electron dense material in the glomerular basement membrane, lamina densa widening. Electron dense material is absent in C3 glomerulopathy. Subepithelial "humps" are found in both C3GN and Dense deposit disease. [20]
Medical Therapy
- Patients with C3 glomerulopathy presents with rare form of glomerulonephritis called dense deposit disease which might end up in membranoproliferative glomerulonephritis (MPGN) pattern of injury on renal biopsy.[21][22]
- Patients with C3GN and Dense Deposit Disease who have hypertension or proteinuria receive an ACE-Inhibitor or Angiotensin-11 receptor blocker
- Disease due to genetic deficiency: The missing mutant protein should be replaced by the periodic infusion of fresh frozen plasma
- Disease secondary to autoantibody: Immunosuppression with
- Preferred regimen (1): Eculizumab
- Preferred regimen (2): rituximab
- Preferred regimen (3): plasma exchange
- Genetic activating mutation in C3: Plasma exchange[23][24][25]
- Patients with progressively worsening renal function:
- Preferred regimen (1): cyclophosphamide
- Preferred regimen (2): mycophenolate mofetil[26]
- Patients with DDD or C3GN may be treated with lipid-lowering medications to prevent cardiovascular events.
Prevention
- There are no primary preventive measures available for C3 glomerulopathy.
References
- ↑ SELIGMANN M, HANAU C (1958). "[Immuno-electrophoretic study of the blood of disseminated lupus erythematosus patients]". Rev Hematol (in French). 13 (2): 239–48. PMID 13568372.
- ↑ WEST CD, NORTHWAY JD, DAVIS NC (August 1964). "SERUM LEVELS OF BETA-1C GLOBULIN, A COMPLEMENT COMPONENT, IN THE NEPHRITIDES, LIPOID NEPHROSIS, AND OTHER CONDITIONS". J. Clin. Invest. 43: 1507–17. doi:10.1172/JCI105027. PMC 441951. PMID 14201535.
- ↑ BERGER J, GALLE P (1962). "[Unusual change of the basal membranes of the kidney]". J Urol Nephrol (Paris). 68: 116–22. PMID 13867660.
- ↑ Fakhouri F, Frémeaux-Bacchi V, Noël LH, Cook HT, Pickering MC (August 2010). "C3 glomerulopathy: a new classification". Nat Rev Nephrol. 6 (8): 494–9. doi:10.1038/nrneph.2010.85. PMID 20606628.
- ↑ Appel GB, Cook HT, Hageman G, Jennette JC, Kashgarian M, Kirschfink M, Lambris JD, Lanning L, Lutz HU, Meri S, Rose NR, Salant DJ, Sethi S, Smith RJ, Smoyer W, Tully HF, Tully SP, Walker P, Welsh M, Würzner R, Zipfel PF (May 2005). "Membranoproliferative glomerulonephritis type II (dense deposit disease): an update". J. Am. Soc. Nephrol. 16 (5): 1392–403. doi:10.1681/ASN.2005010078. PMID 15800116.
- ↑ Servais A, Frémeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B; et al. (2007). "Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome". J Med Genet. 44 (3): 193–9. doi:10.1136/jmg.2006.045328. PMC 2598029. PMID 17018561.
- ↑ Schwertz R, de Jong R, Gretz N, Kirschfink M, Anders D, Schärer K (March 1996). "Outcome of idiopathic membranoproliferative glomerulonephritis in children. Arbeitsgemeinschaft Pädiatrische Nephrologie". Acta Paediatr. 85 (3): 308–12. PMID 8695987.
- ↑ Thomas S, Ranganathan D, Francis L, Madhan K, John GT (November 2014). "Current concepts in C3 glomerulopathy". Indian J Nephrol. 24 (6): 339–48. doi:10.4103/0971-4065.134089. PMC 4244712. PMID 25484526.
- ↑ Noris M, Remuzzi G (November 2013). "Overview of complement activation and regulation". Semin. Nephrol. 33 (6): 479–92. doi:10.1016/j.semnephrol.2013.08.001. PMC 3820029. PMID 24161035.
- ↑ Thomas S, Ranganathan D, Francis L, Madhan K, John GT (November 2014). "Current concepts in C3 glomerulopathy". Indian J Nephrol. 24 (6): 339–48. doi:10.4103/0971-4065.134089. PMC 4244712. PMID 25484526.
- ↑ Bomback AS, Appel GB (November 2012). "Pathogenesis of the C3 glomerulopathies and reclassification of MPGN". Nat Rev Nephrol. 8 (11): 634–42. doi:10.1038/nrneph.2012.213. PMID 23026947.
- ↑ Holers VM (June 2013). "Human C3 glomerulopathy provides unique insights into complement factor H-related protein function". J. Clin. Invest. 123 (6): 2357–60. doi:10.1172/JCI69684. PMC 3668810. PMID 23728171.
- ↑ Rodríguez de Córdoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sánchez-Corral P (June 2004). "The human complement factor H: functional roles, genetic variations and disease associations". Mol. Immunol. 41 (4): 355–67. doi:10.1016/j.molimm.2004.02.005. PMID 15163532.
- ↑ Noris M, Donadelli R, Remuzzi G (June 2018). "Autoimmune abnormalities of the alternative complement pathway in membranoproliferative glomerulonephritis and C3 glomerulopathy". Pediatr. Nephrol. doi:10.1007/s00467-018-3989-0. PMID 29948306.
- ↑ Togarsimalemath SK, Sethi SK, Duggal R, Le Quintrec M, Jha P, Daniel R, Gonnet F, Bansal S, Roumenina LT, Fremeaux-Bacchi V, Kher V, Dragon-Durey MA (October 2017). "A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy". Kidney Int. 92 (4): 876–887. doi:10.1016/j.kint.2017.04.025. PMID 28729035.
- ↑ Smith RJ, Alexander J, Barlow PN, Botto M, Cassavant TL, Cook HT; et al. (2007). "New approaches to the treatment of dense deposit disease". J Am Soc Nephrol. 18 (9): 2447–56. doi:10.1681/ASN.2007030356. PMC 4853920. PMID 17675665.
- ↑ Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean L, Stephens K, Amemiya A, Martín B, Smith R. PMID 20301598. Vancouver style error: initials (help); Missing or empty
|title=
(help) - ↑ Ito N, Ohashi R, Nagata M (August 2017). "C3 glomerulopathy and current dilemmas". Clin. Exp. Nephrol. 21 (4): 541–551. doi:10.1007/s10157-016-1358-5. PMC 5721121. PMID 27878657.
- ↑ Thomas S, Ranganathan D, Francis L, Madhan K, John GT (November 2014). "Current concepts in C3 glomerulopathy". Indian J Nephrol. 24 (6): 339–48. doi:10.4103/0971-4065.134089. PMC 4244712. PMID 25484526.
- ↑ Habib R, Gubler MC, Loirat C, Mäiz HB, Levy M (April 1975). "Dense deposit disease: a variant of membranoproliferative glomerulonephritis". Kidney Int. 7 (4): 204–15. PMID 1095806.
- ↑ Sethi S, Fervenza FC, Zhang Y, Zand L, Vrana JA, Nasr SH, Theis JD, Dogan A, Smith RJ (August 2012). "C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up". Kidney Int. 82 (4): 465–73. doi:10.1038/ki.2012.212. PMC 4438675. PMID 22673887.
- ↑ Servais A, Frémeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B, Grünfeld JP, Lesavre P, Noël LH, Fakhouri F (March 2007). "Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome". J. Med. Genet. 44 (3): 193–9. doi:10.1136/jmg.2006.045328. PMC 2598029. PMID 17018561.
- ↑ Krmar RT, Holtbäck U, Linné T, Berg UB, Celsi G, Söderberg MP, Wernerson A, Szakos A, Larsson S, Skattum L, Bárány P (February 2011). "Acute renal failure in dense deposit disease: complete recovery after combination therapy with immunosuppressant and plasma exchange". Clin. Nephrol. 75 Suppl 1: 4–10. PMID 21269585.
- ↑ McGinley E, Watkins R, McLay A, Boulton-Jones JM (1985). "Plasma exchange in the treatment of mesangiocapillary glomerulonephritis". Nephron. 40 (4): 385–90. doi:10.1159/000183504. PMID 4022205.
- ↑ Kurtz KA, Schlueter AJ (2002). "Management of membranoproliferative glomerulonephritis type II with plasmapheresis". J Clin Apher. 17 (3): 135–7. doi:10.1002/jca.10026. PMID 12378549.
- ↑ Rabasco C, Cavero T, Román E, Rojas-Rivera J, Olea T, Espinosa M, Cabello V, Fernández-Juarez G, González F, Ávila A, Baltar JM, Díaz M, Alegre R, Elías S, Antón M, Frutos MA, Pobes A, Blasco M, Martín F, Bernis C, Macías M, Barroso S, de Lorenzo A, Ariceta G, López-Mendoza M, Rivas B, López-Revuelta K, Campistol JM, Mendizábal S, de Córdoba SR, Praga M (November 2015). "Effectiveness of mycophenolate mofetil in C3 glomerulonephritis". Kidney Int. 88 (5): 1153–60. doi:10.1038/ki.2015.227. PMID 26221755.