Abacavir lamivudine clinical pharmacology

Revision as of 19:59, 9 January 2014 by ShiSheng (talk | contribs) (Created page with "__NOTOC__ {{Abacavir lamivudine}} {{CMG}}; {{AE}} {{SS}} ==Clinical Pharmacology== ===Pharmacokinetics=== '''Pharmacokinetics in Adults''': EPZICOM: In a single-dose, 3-way...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Abacavir lamivudine
EPZICOM ® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]

Clinical Pharmacology

Pharmacokinetics

Pharmacokinetics in Adults: EPZICOM: In a single-dose, 3-way crossover bioavailability trial of 1 EPZICOM Tablet versus 2 ZIAGEN Tablets (2 x 300 mg) and 2 EPIVIR Tablets (2 x 150 mg) administered simultaneously in healthy subjects (n = 25), there was no difference in the extent of absorption, as measured by the area under the plasma concentration-time curve (AUC) and maximal peak concentration (Cmax), of each component.

Abacavir: Following oral administration, abacavir is rapidly absorbed and extensively distributed. After oral administration of a single dose of 600 mg of abacavir in 20 subjects, Cmax was 4.26 ± 1.19 mcg/mL (mean ± SD) and AUC∞ was 11.95 ± 2.51 mcg•h/mL. Binding of abacavir to human plasma proteins is approximately 50% and was independent of concentration. Total blood and plasma drug-related radioactivity concentrations are identical, demonstrating that abacavir readily distributes into erythrocytes. The primary routes of elimination of abacavir are metabolism by alcohol dehydrogenase to form the 5′-carboxylic acid and glucuronyl transferase to form the 5′-glucuronide.

Lamivudine: Following oral administration, lamivudine is rapidly absorbed and extensively distributed. After multiple-dose oral administration of lamivudine 300 mg once daily for 7 days to 60 healthy subjects, steady-state Cmax (Cmax,ss) was 2.04 ± 0.54 mcg/mL (mean ± SD) and the 24-hour steady-state AUC (AUC24,ss) was 8.87 ± 1.83 mcg•h/mL. Binding to plasma protein is low. Approximately 70% of an intravenous dose of lamivudine is recovered as unchanged drug in the urine. Metabolism of lamivudine is a minor route of elimination. In humans, the only known metabolite is the trans-sulfoxide metabolite (approximately 5% of an oral dose after 12 hours).

The steady-state pharmacokinetic properties of the EPIVIR 300-mg tablet once daily for 7 days compared with the EPIVIR 150-mg tablet twice daily for 7 days were assessed in a crossover trial in 60 healthy subjects. EPIVIR 300 mg once daily resulted in lamivudine exposures that were similar to EPIVIR 150 mg twice daily with respect to plasma AUC24,ss; however, Cmax,ss was 66% higher and the trough value was 53% lower compared with the 150-mg twice-daily regimen. Intracellular lamivudine triphosphate exposures in peripheral blood mononuclear cells were also similar with respect to AUC24,ss and Cmax24,ss; however, trough values were lower compared with the 150-mg twice-daily regimen. Inter-subject variability was greater for intracellular lamivudine triphosphate concentrations versus lamivudine plasma trough concentrations. The clinical significance of observed differences for both plasma lamivudine concentrations and intracellular lamivudine triphosphate concentrations is not known.

In humans, abacavir and lamivudine are not significantly metabolized by cytochrome P450 enzymes.

The pharmacokinetic properties of abacavir and lamivudine in fasting subjects are summarized in Table 2.

thumb|850px|left

Effect of Food on Absorption of EPZICOM: EPZICOM may be administered with or without food. Administration with a high-fat meal in a single-dose bioavailability trial resulted in no change in AUClast, AUC∞, and Cmax for lamivudine. Food did not alter the extent of systemic exposure to abacavir (AUC∞), but the rate of absorption (Cmax) was decreased approximately 24% compared with fasted conditions (n = 25). These results are similar to those from previous trials of the effect of food on abacavir and lamivudine tablets administered separately.

Special Populations: Renal Impairment: EPZICOM: Because lamivudine requires dose adjustment in the presence of renal insufficiency, EPZICOM is not recommended for use in patients with creatinine clearance <50 mL/min [see Dosage and Administration (2.2)].

Hepatic Impairment: EPZICOM: EPZICOM is contraindicated for patients with hepatic impairment because EPZICOM is a fixed-dose combination and the dosage of the individual components cannot be adjusted. Abacavir is contraindicated in patients with moderate to severe hepatic impairment, and dose reduction is required in patients with mild hepatic impairment.

Pregnancy: See Use in Specific Populations (8.1).

Abacavir and Lamivudine: No data are available on the pharmacokinetics of abacavir or lamivudine during pregnancy.

Nursing Mothers: See Use in Specific Populations (8.3).

'Abacavir: No data are available on the pharmacokinetics of abacavir in nursing mothers.

Lamivudine: Samples of breast milk obtained from 20 mothers receiving lamivudine monotherapy (300 mg twice daily) or combination therapy (150 mg lamivudine twice daily and 300 mg zidovudine twice daily) had measurable concentrations of lamivudine.

Pediatric Patients: EPZICOM: The pharmacokinetics of EPZICOM in pediatric subjects are under investigation. There are insufficient data at this time to recommend a dose.

Geriatric Patients: The pharmacokinetics of abacavir and lamivudine have not been studied in subjects over 65 years of age.

Gender: Abacavir: A population pharmacokinetic analysis in HIV-1-infected male (n = 304) and female (n = 67) subjects showed no gender differences in abacavir AUC normalized for lean body weight.

Lamivudine: A pharmacokinetic trial in healthy male (n = 12) and female (n = 12) subjects showed no gender differences in lamivudine AUC∞ normalized for body weight.

Race: Abacavir: There are no significant differences between blacks and Caucasians in abacavir pharmacokinetics.

Lamivudine: There are no significant racial differences in lamivudine pharmacokinetics.

Drug Interactions: The drug interactions described are based on trials conducted with the individual nucleoside analogues. In humans, abacavir and lamivudine are not significantly metabolized by cytochrome P450 enzymes nor do they inhibit or induce this enzyme system; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways.

Abacavir: Lamivudine and Zidovudine: Fifteen HIV-1-infected subjects were enrolled in a crossover-designed drug interaction trial evaluating single doses of abacavir (600 mg), lamivudine (150 mg), and zidovudine (300 mg) alone or in combination. Analysis showed no clinically relevant changes in the pharmacokinetics of abacavir with the addition of lamivudine or zidovudine or the combination of lamivudine and zidovudine. Lamivudine exposure (AUC decreased 15%) and zidovudine exposure (AUC increased 10%) did not show clinically relevant changes with concurrent abacavir.

Methadone: In a trial of 11 HIV-1-infected subjects receiving methadone-maintenance therapy (40 mg and 90 mg daily), with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased 22% (90% CI: 6% to 42%) [see Drug Interactions (7.3)].

Lamivudine: Zidovudine: No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV-1-infected adult subjects given a single dose of zidovudine (200 mg) in combination with multiple doses of lamivudine (300 mg q 12 hr).

Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV-1/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi-drug regimen to HIV-1/HCV co-infected subjects [see Warnings and Precautions (5.4)].

The effects of other coadministered drugs on abacavir or lamivudine are provided in Table 3.

thumb|850px|left

[1]

References

  1. "RETROVIR (ZIDOVUDINE) CAPSULE RETROVIR (ZIDOVUDINE) TABLET, FILM COATED RETROVIR (ZIDOVUDINE) SYRUP [VIIV HEALTHCARE COMPANY]". Retrieved 9 January 2014.

Adapted from the FDA Package Insert.