Androgen insensitivity syndrome laboratory findings
Androgen insensitivity syndrome Microchapters |
Differentiating Androgen insensitivity syndrome from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Androgen insensitivity syndrome laboratory findings On the Web |
American Roentgen Ray Society Images of Androgen insensitivity syndrome laboratory findings |
Androgen insensitivity syndrome laboratory findings in the news |
Blogs on Androgen insensitivity syndrome laboratory findings |
Directions to Hospitals Treating Androgen insensitivity syndrome |
Risk calculators and risk factors for Androgen insensitivity syndrome laboratory findings |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aravind Reddy Kothagadi M.B.B.S[2]
Overview
Laboratory findings which suggest the presence of normal or increased synthesis of testosterone and its normal conversion to dihydrotestosterone, and normal or increased luteinizing hormone (LH) production by the pituitary gland AND/OR by the identification of a hemizygous pathogenic variant.
Laboratory Findings
Supportive laboratory findings:[1]
- Normal presentation of 46,XY karyotype
- Presence of normal or increased synthesis of testosterone (T) by the testes
- Presence of normal conversion of testosterone to dihydrotestosterone (DHT)
- Presence of normal or increased luteinizing hormone (LH) production by the pituitary gland
- In CAIS, but not in PAIS: possible reduction in postnatal (0-3 months) surge in serum luteinizing hormone (LH) and serum testosterone (T) concentrations.
- In the “predominantly male” phenotype:
- In response to a standard dose of the anabolic androgen, stanozolol there would be less than normal decline of sex hormone-binding globulin
- During the first year of life or after the beginning of puberty, there would be higher than normal levels of anti-müllerian hormone (AMH)
- If a phenotypic female has 46,XY karyotype and if the androgen receptor (AR) variant in the family is determined, then the next step would be molecular genetic testing which incluides:
- Single-gene testing
- Multi-gene panel
- Genomic testing which would be including the exome sequencing and the genome sequencing may be considered if single-gene testing (and/or use of a multi-gene panel that includes androgen receptor (AR) ) fails to confirm a diagnosis in patients with features of AIS.
- While performing prenatal amniocentesis, the male karyotype is not determined by the ultrasound or obvious female appearance at birth.
- If an androgen receptor (AR) variant has not been identified in the family, then Androgen binding assays may be considered.
- By the extensive use of prenatal testing modalities such as pre-implantation genetic screening, noninvasive prenatal screening, and ultrasonography there would be more disagreement in coming to a final conclusion which would require expert navigation to identify true pathology. [2]
Molecular Genetic Testing Used in Androgen Insensitivity Syndrome | ||
Gene | Test Method | Proportion of 46,XY Probands w/a Pathogenic Variant 2 Detectable by This Method |
---|---|---|
AR | Sequence analysis |
|
Gene-targeted deletion/duplication analysis |
|
References
- ↑ Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean L, Bird TD, Ledbetter N, Mefford HC, Smith R, Stephens K, Gottlieb B, Trifiro MA. PMID 20301602. Vancouver style error: initials (help); Missing or empty
|title=
(help) - ↑ Franasiak JM, Yao X, Ashkinadze E, Rosen T, Scott RT (2015). "Discordant embryonic aneuploidy testing and prenatal ultrasonography prompting androgen insensitivity syndrome diagnosis". Obstet Gynecol. 125 (2): 383–6. doi:10.1097/AOG.0000000000000503. PMID 25569013.