Alzheimer's disease primary prevention

Jump to navigation Jump to search


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Syed Hassan A. Kazmi BSc, MD [2]

Alzheimer's disease Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Alzheimer's disease from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Alzheimer's disease primary prevention On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Alzheimer's disease primary prevention

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Alzheimer's disease primary prevention

CDC on Alzheimer's disease primary prevention

Alzheimer's disease primary prevention in the news

Blogs on Alzheimer's disease primary prevention

Directions to Hospitals Treating Alzheimer's disease

Risk calculators and risk factors for Alzheimer's disease primary prevention

Overview

Mental stimulation, exercise, and the maintenance of a balanced diet are often recommended as both a possible prevention and a sensible way of managing the disease.[1]

Prevention

Intellectual activities such as playing chess or regular social interaction have been linked to a reduced risk of AD in epidemiological studies, although no causal relationship has been found.
  • No specific, well-validated measures to delay or prevent the onset of AD exist. This is due to contradictory results of global studies, as well as a paucity of proven causal relationships between risk factors and the development or progression of the disease.[2]
  • Modifiable factors such as diet, cardiovascular risks, pharmaceutical products, or intellectual activities have all been evaluated with epidemiological studies to see if they increase a population's risk of developing AD.[3]
  • The components of a Mediterranean diet, which include fruit and vegetables, bread, wheat and other cereals, olive oil, fish, and red wine, may reduce the risk and course of Alzheimer's disease.
  • There is evidence that frequent and moderate consumption of alcohol (beer, wine or distilled spirits) reduces the risk of the disease,[4] [5] but it is still considered premature to make dietary recommendations on this basis.[6][7]
  • Vitamins E, B, and C, or folic acid have appeared to be related to a reduced risk of AD,[8] but other studies indicate that they do not have any significant effect on the onset or course of the disease, but may have important secondary effects in conjunction with other therapies.[9]
  • Curcumin in curry has shown some effectiveness in preventing brain damage in mouse models.[10]

Lifestyle Factors

  • A nutritious diet, physical activity, social engagement, and mentally stimulating pursuits can all help people stay healthy. New research suggests the possibility that these factors also might help to reduce the risk of cognitive decline and Alzheimer’s disease.
  • Scientists are investigating associations between cognitive decline and vascular and metabolic conditions such as heart disease, stroke, high blood pressure, diabetes, and obesity. Understanding these relationships and testing them in clinical trials will help us understand whether reducing risk factors for these diseases may help with Alzheimer’s as well.
  • Intellectual activities such as playing chess, completing crossword puzzles, or engaging in regular social interaction may also delay the onset or reduce the severity of Alzheimer's disease.[21][22] Bilingualism also appears to be correlated to a later onset of Alzheimer's disease.[23]

References

  1. "Can Alzheimer's disease be prevented" (pdf). National Institute on Aging. 2006-08-29. Retrieved 2008-02-29.
  2. Prevention recommendations not supported:
    • Kawas CH (2006). "Medications and diet: protective factors for AD?". Alzheimer Dis Assoc Disord. 20 (3 Suppl 2): S89–96. PMID 16917203.
    • Luchsinger JA, Mayeux R (2004). "Dietary factors and Alzheimer's disease". Lancet Neurol. 3 (10): 579–87. doi:10.1016/S1474-4422(04)00878-6. PMID 15380154.
    • Luchsinger JA, Noble JM, Scarmeas N (2007). "Diet and Alzheimer's disease". Curr Neurol Neurosci Rep. 7 (5): 366–72. doi:10.1007/s11910-007-0057-8. PMID 17764625.
  3. Szekely CA, Breitner JC, Zandi PP (2007). "Prevention of Alzheimer's disease". Int Rev Psychiatry. 19 (6): 693–706. doi:10.1080/09540260701797944. PMID 18092245.
  4. Alcohol:
    • Mulkamal KJ; et al. (2003-03-19). "Prospective study of alcohol consumption and risk of dementia in older adults". Journal of the American Medical Association. 289: 1405–1413.
    • Ganguli M; et al. (2005). "Alcohol consumption and cognitive function in late life: A longitudinal community study". Neurology. 65: 1210–1217.
    • Huang W; et al. (2002). "Alcohol consumption and incidence of dementia in a community sample aged 75 years and older". Journal of Clinical Epidemiology. 55 (10): 959–964.
    • Rodgers B; et al. (2005). "Non-linear relationships between cognitive function and alcohol consumption in young, middle-aged and older adults: The PATH Through Life Project". Addiction. 100 (9): 1280–1290.
    • Anstey KJ; et al. (2005). "Lower cognitive test scores observed in alcohol are associated with demographic, personality, and biological factors: The PATH Through Life Project". Addiction. 100 (9): 1291–1301, .Espeland, M.; et al. (2006). "Association between alcohol intake and domain-specific cognitive function in older women". Neuroepidemiology. 1 (27): 1–12.
    • Stampfer MJ; et al. (2005). "Effects of moderate alcohol consumption on cognitive function in women". New England Journal of Medicine. 352: 245–253.
    • Ruitenberg A; et al. (2002). "Alcohol consumption and risk of dementia: the Rotterdam Study". Lancet. 359 (9303): 281–286.
    • Scarmeas N; et al. (2006-04-18). "Mediterranean diet and risk for Alzheimer's disease". Annals of Neurology.
  5. Mediterranean diet:
    • Scarmeas N, Stern Y, Mayeux R, Luchsinger JA (2006). "Mediterranean diet, Alzheimer disease, and vascular mediation". Arch. Neurol. 63 (12): 1709–1717. doi:10.1001/archneur.63.12.noc60109. PMID 17030648.
    • Scarmeas N, Luchsinger JA, Mayeux R, Stern Y (2007). "Mediterranean diet and Alzheimer disease mortality". Neurology. 69 (11): 1084–93. doi:10.1212/01.wnl.0000277320.50685.7c. PMID 17846408.
    • Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues JF, Alpérovitch A (2007). "Dietary patterns and risk of dementia: the Three-City cohort study". Neurology. 69 (20): 1921–1930. doi:10.1212/01.wnl.0000278116.37320.52. PMID 17998483.
    • Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006). "Fruit and vegetable juices and Alzheimer's disease: the Kame Project". American Journal of Medicine. 119 (9): 751–759. doi:10.1016/j.amjmed.2006.03.045. PMID 16945610.
    • Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Müller-Spahn F (2003). "Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity". Gerontology. 49 (6): 380–383. doi:10.1159/000073766. PMID 14624067.
  6. Luchsinger JA, Mayeux R (2004 Oct). "Dietary factors and Alzheimer's disease". Lancet Neurology. 3 (10): 579–587. PMID 15380154. Available data do not permit definitive conclusions regarding diet and AD or specific recommendations on diet modification for the prevention of AD. Check date values in: |date= (help)
  7. Kawas CH (2006 Jul-Sep). "Medications and diet: protective factors for AD?". Alzheimer Dis Assoc Disord. 20 (3 Suppl 2): S89–96. PMID 16917203. Evidence regarding dietary and supplemental intake of vitamins E, C, and folate, and studies of alcohol and wine intake are also reviewed. At present, there is insufficient evidence to make public health recommendations, but these studies can provide potentially important clues and new avenues for clinical and laboratory research. Check date values in: |date= (help)
  8. Vitamins:
    • Morris MC, Schneider JA, Tangney CC (2006). "Thoughts on B-vitamins and dementia". J. Alzheimers Dis. 9 (4): 429–33. PMID 16917152.
    • Alzheimer's Association. "Vitamin E".
    • Landmark K (2006). "[Could intake of vitamins C and E inhibit development of Alzheimer dementia?]". Tidsskr. Nor. Laegeforen. (in Norwegian). 126 (2): 159–61. PMID 16415937.
    • Luchsinger JA, Tang MX, Miller J, Green R, Mayeux R (2007). "Relation of higher folate intake to lower risk of Alzheimer disease in the elderly". Arch. Neurol. 64 (1): 86–92. doi:10.1001/archneur.64.1.86. PMID 17210813.
  9. Vitamins only of secondary benefit:
    • Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT (2006). "Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer's disease". J. Alzheimers Dis. 9 (4): 435–43. PMID 16917153.
    • Malouf M, Grimley EJ, Areosa SA (2003). "Folic acid with or without vitamin B12 for cognition and dementia". Cochrane Database Syst Rev (4): CD004514. doi:10.1002/14651858.CD004514. PMID 14584018.
    • Sun Y, Lu CJ, Chien KL, Chen ST, Chen RC (2007). "Efficacy of multivitamin supplementation containing vitamins B6 and B12 and folic acid as adjunctive treatment with a cholinesterase inhibitor in Alzheimer's disease: a 26-week, randomised, double-blind, placebo-controlled study in Taiwanese patients". Clin Ther. 29 (10): 2204–14. doi:10.1016/j.clinthera.2007.10.012. PMID 18042476.
    • Boothby LA, Doering PL (2005). "Vitamin C and vitamin E for Alzheimer's disease". Ann Pharmacother. 39 (12): 2073–80. doi:10.1345/aph.1E495. PMID 16227450.
    • Gray SL, Anderson ML, Crane PK, Breitner JC, McCormick W, Bowen JD, Teri L, Larson E (2008). "Antioxidant vitamin supplement use and risk of dementia or Alzheimer's disease in older adults". J Am Geriatr Soc. 56 (2): 291–295. doi:10.1111/j.1532-5415.2007.01531.x. PMID 18047492.
  10. Curcumin in diet:
    • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007). "Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model". Journal of Neurochemistry. 102 (4): 1095–1104. doi:10.1111/j.1471-4159.2007.04613.x. PMID 17472706.
    • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001). "The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse". Journal of Neuroscience. 21 (21): 8370–8377. PMID 11606625.
  11. Rosendorff C, Beeri MS, Silverman JM (2007). "Cardiovascular risk factors for Alzheimer's disease". Am J Geriatr Cardiol. 16 (3): 143–9. doi:10.1111/j.1076-7460.2007.06696.x. PMID 17483665.
  12. Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I (2003). "An 18-year follow-up of overweight and risk of Alzheimer disease". Arch. Intern. Med. 163 (13): 1524–1528. doi:10.1001/archinte.163.13.1524. PMID 12860573.
  13. Reiss AB, Wirkowski E (2007). "Role of HMG-CoA reductase inhibitors in neurological disorders : progress to date". Drugs. 67 (15): 2111–2120. PMID 17927279.
  14. Kuller LH (2007). "Statins and dementia". Current Atherosclerosis Reports. 9 (2): 154–161. doi:10.1007/s11883-007-0012-9. PMID 17877925.
  15. Szekely CA, Breitner JC, Fitzpatrick AL, Rea TD, Psaty BM, Kuller LH, Zandi PP (2008). "NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type". Neurology. 70 (1): 17–24. doi:10.1212/01.wnl.0000284596.95156.48. PMID 18003940.
  16. "Long-term use of ibuprofen may reduce the risk of developing Alzheimer's disease, a large US study reports". BBC. 2008-05-05.
  17. "Ibuprofen Linked to Reduced Alzheimer's Risk". Washington Post. 2008-05-05.
  18. Craig MC, Murphy DG (2007). "Estrogen: effects on normal brain function and neuropsychiatric disorders". Climacteric. 10 Suppl 2: 97–104. doi:10.1080/13697130701598746. PMID 17882683.
  19. Mori K, Takeda M (2007). "Hormone replacement Up-to-date. Hormone replacement therapy and brain function". Clin Calcium (in Japanese). 17 (9): 1349–1354. doi:CliCa070913491354 Check |doi= value (help). PMID 17767023.
  20. Birks J, Grimley Evans J (2007). "Ginkgo biloba for cognitive impairment and dementia". Cochrane Database Syst Rev (2): CD003120. doi:10.1002/14651858.CD003120.pub2. PMID 17443523. Retrieved 2008-02-22.
  21. Verghese J, Lipton R, Katz M, Hall C, Derby C, Kuslansky G, Ambrose A, Sliwinski M, Buschke H (2003). "Leisure activities and the risk of dementia in the elderly". N Engl J Med. 348 (25): 2508–2516. doi:10.1056/NEJMoa022252. PMID 12815136.
  22. Bennett DA, Schneider JA, Tang Y, Arnold SE, Wilson RS (2006). "The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: a longitudinal cohort study". Lancet Neurol. 5 (5): 406–412. doi:10.1016/S1474-4422(06)70417-3. PMID 16632311.
  23. Bialystok E, Craik FIM, Freedman M (2007). "Bilingualism as a protection against the onset of symptoms of dementia". Neuropsychologia. 42 (2): 459–464. doi:10.1016/j.neuropsychologia.2006.10.009.

Template:WS Template:WH