KIF3A is one subunit of the heterotrimeric motor protein, kinesin-2, that was initially isolated from sea urchin egg/embryo cytosol using microtubule affinity purification.[3] This motor consists of two kinesin-related subunits (called KIF3A and KIF3B or 3C in vertebrates) and an associated protein (KAP3), and it transports protein complexes, nucleic acids and organelles towards the "plus" ends of microtubule tracks within cells. Work done in a broad range of eukaryotic cells has revealed that heterotrimeric kinesin-2 is the primary motor protein driving the intra-flagellar transport of tubulins and other axonemal building blocks from the base of the ciliary/flagellar axoneme to their site of assembly at the distal tips.[4] This process is required for cilium assembly/maintenance and cilium-based signalling which play key roles in various cell and developmental processes. For example, in vertebrate embryos, kinesin-2 function is required for cilia-dependent nodal flow and the development of left-right asymmetry.[5]
↑Whitehead JL, Wang SY, Bost-Usinger L, Hoang E, Frazer KA, Burnside B (November 1999). "Photoreceptor localization of the KIF3A and KIF3B subunits of the heterotrimeric microtubule motor kinesin II in vertebrate retina". Exp. Eye Res. 69 (5): 491–503. doi:10.1006/exer.1999.0724. PMID10548469.
↑Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (December 1998). "Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein". Cell. 95 (6): 829–37. doi:10.1016/S0092-8674(00)81705-5. PMID9865700.
Shimizu K, Shirataki H, Honda T, et al. (1998). "Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide". J. Biol. Chem. 273 (12): 6591–4. doi:10.1074/jbc.273.12.6591. PMID9506951.
Hasegawa T, Yagi A, Isobe K (2000). "Interaction between GADD34 and kinesin superfamily, KIF3A". Biochem. Biophys. Res. Commun. 267 (2): 593–6. doi:10.1006/bbrc.1999.1991. PMID10631107.
Jimbo T, Kawasaki Y, Koyama R, et al. (2002). "Identification of a link between the tumour suppressor APC and the kinesin superfamily". Nat. Cell Biol. 4 (4): 323–7. doi:10.1038/ncb779. PMID11912492.
Aronov S, Aranda G, Behar L, Ginzburg I (2003). "Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules". J. Cell Sci. 115 (Pt 19): 3817–27. doi:10.1242/jcs.00058. PMID12235292.
Surpili MJ, Delben TM, Kobarg J (2004). "Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1". Biochemistry. 42 (51): 15369–76. doi:10.1021/bi034575v. PMID14690447.
Schmutz J, Martin J, Terry A, et al. (2004). "The DNA sequence and comparative analysis of human chromosome 5". Nature. 431 (7006): 268–74. doi:10.1038/nature02919. PMID15372022.
Haraguchi K, Hayashi T, Jimbo T, et al. (2006). "Role of the kinesin-2 family protein, KIF3, during mitosis". J. Biol. Chem. 281 (7): 4094–9. doi:10.1074/jbc.M507028200. PMID16298999.
Camargo LM, Collura V, Rain JC, et al. (2007). "Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia". Mol. Psychiatry. 12 (1): 74–86. doi:10.1038/sj.mp.4001880. PMID17043677.
Pantelidou M, Zographos SE, Lederer CW, et al. (2007). "Differential expression of molecular motors in the motor cortex of sporadic ALS". Neurobiol. Dis. 26 (3): 577–89. doi:10.1016/j.nbd.2007.02.005. PMID17418584.