Syndrome of inappropriate antidiuretic hormone pathophysiology

Jump to navigation Jump to search

Syndrome of inappropriate antidiuretic hormone Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differential Diagnosis

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Syndrome of inappropriate antidiuretic hormone pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Syndrome of inappropriate antidiuretic hormone pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Syndrome of inappropriate antidiuretic hormone pathophysiology

CDC on Syndrome of inappropriate antidiuretic hormone pathophysiology

Syndrome of inappropriate antidiuretic hormone pathophysiology in the news

Blogs on Syndrome of inappropriate antidiuretic hormone pathophysiology

Directions to Hospitals Treating Syndrome of inappropriate antidiuretic hormone

Risk calculators and risk factors for Syndrome of inappropriate antidiuretic hormone pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vindhya BellamKonda, M.B.B.S [2]

Overview

Syndrome of inappropriate antidiuretic hormone production is a condition in which the body develops an excess of water and a decrease in the concentration of electrolytes. SIADH may be caused by a central nervous system diseases, cancers, pulmonary diseases, or some drugs. ADH is normally produced by the posterior pituitary gland to prevent water loss in the kidneys. In SIADH, ADH level rises above the normal level. Aquaporins are localized on storage vesicles in the cytoplasm of the epithelial cells which make up the collecting ducts of the kidneys. High ADH level stimulates mass fusion of aquaporin-carrying storage vesicles with the plasma membrane. High aquaporin density facilitates high diffusion of water across the plasma membrane. Excess water is reabsorbed from the nephrons and is returned to the blood. A mutation affecting the gene for the renal V2 receptor might cause SIADH.

Pathophysiology

The normal function of antidiuretic hormone (ADH) on the kidneys is to control the amount of water reabsorbed by kidney nephrons. ADH acts on the distal portion of the renal tubule (distal convoluted tubule) as well as the collecting duct and causes the retention of water. Owing to the water retention, dilution of the blood and hyponatremia occurs.

Pathogenesis

https://youtu.be/MR8BABoFTP8}}

Feedback inhibition

Genetics

Associated conditions

Gross pathology

There are no gross pathology findings associated with SIADH. However, SIADH may be associated with squamous cell carcinoma of the lung, which exhibits the following gross pathology findings:

Squamous cell carcinoma of the lung, source: radiopedia.org


Microscopic pathology

There are no microscopic findings associated with SIADH. However, SIADH may be associated with squamous cell carcinoma of the lung, which exhibits the following microscopic pathology findings:[6][7]

Squamous cell carcinoma of the lung, source: librepathology.com


References

  1. Pillai BP, Unnikrishnan AG, Pavithran PV (2011). "Syndrome of inappropriate antidiuretic hormone secretion: Revisiting a classical endocrine disorder". Indian J Endocrinol Metab. 15 Suppl 3: S208–15. doi:10.4103/2230-8210.84870. PMC 3183532. PMID 22029026.
  2. Tian W, Fu Y, Garcia-Elias A, Fernández-Fernández JM, Vicente R, Kramer PL, Klein RF, Hitzemann R, Orwoll ES, Wilmot B, McWeeney S, Valverde MA, Cohen DM (2009). "A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia". Proc. Natl. Acad. Sci. U.S.A. 106 (33): 14034–9. doi:10.1073/pnas.0904084106. PMC 2729015. PMID 19666518.
  3. Onitilo AA, Kio E, Doi SA (2007). "Tumor-related hyponatremia". Clin Med Res. 5 (4): 228–37. doi:10.3121/cmr.2007.762. PMC 2275758. PMID 18086907.
  4. Castillo JJ, Vincent M, Justice E (2012). "Diagnosis and management of hyponatremia in cancer patients". Oncologist. 17 (6): 756–65. doi:10.1634/theoncologist.2011-0400. PMC 3380874. PMID 22618570.
  5. Dóczi T, Tarjányi J, Huszka E, Kiss J (1982). "Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) after head injury". Neurosurgery. 10 (6 Pt 1): 685–8. PMID 7110540.
  6. "www.iarc.fr" (PDF).
  7. Kadota K, Nitadori J, Woo KM, Sima CS, Finley DJ, Rusch VW, Adusumilli PS, Travis WD (2014). "Comprehensive pathological analyses in lung squamous cell carcinoma: single cell invasion, nuclear diameter, and tumor budding are independent prognostic factors for worse outcomes". J Thorac Oncol. 9 (8): 1126–39. doi:10.1097/JTO.0000000000000253. PMC 4806792. PMID 24942260.