Transitional cell carcinoma pathophysiology
Transitional cell carcinoma Microchapters |
Differentiating Transitional cell carcinoma from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Transitional cell carcinoma pathophysiology On the Web |
American Roentgen Ray Society Images of Transitional cell carcinoma pathophysiology |
Directions to Hospitals Treating Transitional cell carcinoma |
Risk calculators and risk factors for Transitional cell carcinoma pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Suveenkrishna Pothuru, M.B,B.S. [2] Ramyar Ghandriz MD[3]
Overview
Genes involved in the pathogenesis of transitional cell carcinoma of bladder include HRAS, Rb1, PTEN/MMAC1, NAT2, and GSTM1. On gross pathology, flat lesions or papillary lesions are characteristic findings of non-invasive transitional cell carcinomas; a large infiltrative mass or a multifocal, flat to papillary lesion with delicate fronds are characteristic findings of invasive transitional cell carcinomas. On microscopic histopathological analysis, loss of cell polarity, nuclear crowding, and cytologic atypia are characteristic findings of flat lesion; fibrovascular stalks, umbrella cells, and eosinophilic cytoplasm are characteristic findings of papillary lesion; invasion beyond the basement membrane is the characteristic finding of invasive transitional cell carcinomas.
Pathogenesis
- The surface epithelium (urothelium) that lines the mucosal surfaces of the entire urinary tract is exposed to potential carcinogens that are either excreted in the urine or activated from precursors in the urine by hydrolyzing enzymes.
- This "field cancerization" effect is one hypothesis to explain the multifocal occurrence that is a characteristic feature of urothelial carcinomas of both the urinary bladder and the upper urinary tract.[1]
- In the majority of cases, multifocal urothelial carcinomas are monoclonal which supports their presumed origin from a single genetically altered cell,referred to as the monoclonality hypothesis.
- Under normal conditions, the bladder, the lower part of the kidneys, the ureters, and the proximal urethra are lined with a specialized mucous membrane referred to as transitional epithelium (also called urothelium).
- Most cancers that form in the bladder, the lower part of the kidneys, the ureters, and the proximal urethra are transitional cell carcinomas (also called urothelial carcinomas) that derive from transitional epithelium.
Genetics
- There has been a small increase in risk in relatives of those with bladder cancer, and the risk appears to be greatest in those whose affected relatives were diagnosed before age 60 years[2][3][4]
- Genetic mutations involved in the pathogenesis of bladder cancer include:[5]
Pathology
Gross Pathology
The following table illustrates the findings on gross pathology for the subtypes of transitional cell carcinoma:[6][7][8]
Type | Description |
---|---|
Non-invasive urothelial carcinoma |
|
Invasive urothelial carcinoma |
|
Microscopic Pathology
Non-invasive urothelial carcinoma
-
- Papillary lesions
- On microscopic histopathological analysis, fibrovascular stalks, umbrella cells, and eosinophilic cytoplasm are characteristic findings.
Invasive urothelial carcinoma
- Invasive urothelial carcinomas grow from the lining of the renal pelvis or ureter into the deeper layers of the renal pelvis or ureter wall, such as lamina propria and muscularis.[8]
- Transitional cell carcinomas with mixed epithelial features are invasive tumors that have different types of cells mixed with the cancer cells.
- They occur less often than typical invasive transitional cell carcinomas and are generally considered to be more aggressive.
- The following table illustrates the findings on microscopic analysis for invasive transitional cell carcinomas with mixed epithelial features:
Subtype | Features on Histopathological Microscopic Analysis |
---|---|
Urothelial carcinomas with squamous differentiation |
|
Urothelial carcinomas with glandular differentiation |
|
Micropapillary urothelial carcinomas |
|
Sarcomatoid urothelial carcinomas |
|
Nested variant of urothelial carcinomas |
|
Microcystic urothelial carcinomas |
|
Lymphoepithelioma-like urothelial carcinomas |
|
Plasmacytoid and lymphoma-like urothelial carcinomas |
|
Giant cell urothelial carcinomas |
|
Clear cell urothelial carcinomas |
|
Lipid cell variant of urothelial carcinomas |
|
Undifferentiated variant of urothelial carcinomas |
|
Urothelial carcinomas with trophoblastic differentiation |
|
Grading
According to the WHO grading criteria, there are two grades of transitional cell carcinoma based on the degree of cellular differentiation:
Grade | Description |
---|---|
Low grade |
|
High grade |
|
Associated Conditions
Following table illustrates the cancers that may be associated with transitional cell carcinoma of urinary tract:[11]
Association | Percentage of cases |
---|---|
Bladder cancer after the diagnosis of upper urinary tract transitional cell cancer |
20 - 50% |
Upper urinary tract transitional cell cancer after the diagnosis of bladder cancer |
0.74 - 4% |
Upper urinary tract transitional cell cancer after cystectomy |
2 - 9% |
References
- ↑ Rabbani F, Perrotti M, Russo P, Herr HW (January 2001). "Upper-tract tumors after an initial diagnosis of bladder cancer: argument for long-term surveillance". J. Clin. Oncol. 19 (1): 94–100. doi:10.1200/JCO.2001.19.1.94. PMID 11134200.
- ↑ Plna K, Hemminki K (2001). "Familial bladder cancer in the National Swedish Family Cancer Database". J Urol. 166 (6): 2129–33. PMID 11696721.
- ↑ Lin J, Spitz MR, Dinney CP, Etzel CJ, Grossman HB, Wu X (2006). "Bladder cancer risk as modified by family history and smoking". Cancer. 107 (4): 705–11. doi:10.1002/cncr.22071. PMID 16845665.
- ↑ Martin C, Leiser CL, O'Neil B, Gupta S, Lowrance WT, Kohlmann W; et al. (2018). "Familial Cancer Clustering in Urothelial Cancer: A Population-Based Case-Control Study". J Natl Cancer Inst. 110 (5): 527–533. doi:10.1093/jnci/djx237. PMC 5946951. PMID 29228305.
- ↑ National Cancer Institute. Physician Data Query Database 2015. http://www.cancer.gov/types/bladder/hp/bladder-treatment-pdq#link/_359_toc Accessed on February 19, 2016
- ↑ 6.0 6.1 Cheng L, Cheville JC, Neumann RM, Bostwick DG (2000). "Flat intraepithelial lesions of the urinary bladder". Cancer. 88 (3): 625–31. PMID 10649257.
- ↑ Cheng L, Cheville JC, Neumann RM, Bostwick DG (1999). "Natural history of urothelial dysplasia of the bladder". Am J Surg Pathol. 23 (4): 443–7. PMID 10199474.
- ↑ 8.0 8.1 Pons F, Orsola A, Morote J, Bellmunt J (2011). "Variant forms of bladder cancer: basic considerations on treatment approaches". Curr Oncol Rep. 13 (3): 216–21. doi:10.1007/s11912-011-0161-4. PMID 21360040.
- ↑ McKenney JK, Amin MB, Young RH (2003). "Urothelial (transitional cell) papilloma of the urinary bladder: a clinicopathologic study of 26 cases". Mod Pathol. 16 (7): 623–9. doi:10.1097/01.MP.0000073973.74228.1E. PMID 12861056.
- ↑ Picozzi S, Casellato S, Bozzini G, Ratti D, Macchi A, Rubino B; et al. (2013). "Inverted papilloma of the bladder: a review and an analysis of the recent literature of 365 patients". Urol Oncol. 31 (8): 1584–90. doi:10.1016/j.urolonc.2012.03.009. PMID 22520573.
- ↑ Kirkali, Ziya; Tuzel, Emre (2003). "Transitional cell carcinoma of the ureter and renal pelvis". Critical Reviews in Oncology/Hematology. 47 (2): 155–169. doi:10.1016/S1040-8428(03)00079-9. ISSN 1040-8428.