SLC34A3: Difference between revisions
No edit summary |
m Bot: HTTP→HTTPS |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Sodium-dependent phosphate transport protein 2C''' is a [[protein]] that in humans is encoded by the ''SLC34A3'' [[gene]].<ref name="pmid11880379">{{cite journal | vauthors = Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K | title = Growth-related renal type II Na/Pi cotransporter | journal = The Journal of Biological Chemistry | volume = 277 | issue = 22 | pages = 19665–72 | date = May 2002 | pmid = 11880379 | pmc = | doi = 10.1074/jbc.M200943200 }}</ref><ref name="pmid16358215">{{cite journal | vauthors = Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM | title = Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3 | journal = American Journal of Human Genetics | volume = 78 | issue = 2 | pages = 193–201 | date = February 2006 | pmid = 16358215 | pmc = 1380229 | doi = 10.1086/499410 }}</ref><ref name="pmid16358214">{{cite journal | vauthors = Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H | title = SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis | journal = American Journal of Human Genetics | volume = 78 | issue = 2 | pages = 179–92 | date = February 2006 | pmid = 16358214 | pmc = 1380228 | doi = 10.1086/499409 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SLC34A3 solute carrier family 34 (sodium phosphate), member 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=142680| accessdate = }}</ref> | ||
}} | |||
{{ | |||
| | |||
== Function == | |||
==See also== | SLC34A3 contributes to the maintenance of [[phosphate|inorganic phosphate]] concentration at the [[kidney]].<ref name="entrez" /> | ||
== Interactions == | |||
SLC34A3 has been shown to [[Protein-protein interaction|interact]] with [[PDZK1]].<ref name="pmid14531806">{{cite journal | vauthors = Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H | title = PDZK1: I. a major scaffolder in brush borders of proximal tubular cells | journal = Kidney International | volume = 64 | issue = 5 | pages = 1733–45 | date = November 2003 | pmid = 14531806 | doi = 10.1046/j.1523-1755.2003.00266.x }}</ref> | |||
==Clinical Correlation== | |||
A mutation in the SLC34A3 gene has been known to cause the [[dominance (genetics)|autosomal recessive]] condition hereditary [[autosomal dominant hypophosphatemic rickets|hypophophatemic rickets]] with [[hypercalciuria]]. This gene is correlated closely with [[SLC34A1]], an analogue sodium phosphate cotransporter protein. Symptoms include renal phosphate wasting in addition to increase levels of [[vitamin D|1,25-dihydroxyvitamin D]] (yields the hypercalcuria).<ref name="pmid16358215" /> | |||
== See also == | |||
* {{MeshName|SLC34A3+protein,+human}} | * {{MeshName|SLC34A3+protein,+human}} | ||
==References== | == References == | ||
{{reflist}} | {{reflist}} | ||
==Further reading== | == Further reading == | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
* {{cite journal | vauthors = Forster IC, Hernando N, Biber J, Murer H | title = Proximal tubular handling of phosphate: A molecular perspective | journal = Kidney International | volume = 70 | issue = 9 | pages = 1548–59 | date = November 2006 | pmid = 16955105 | doi = 10.1038/sj.ki.5001813 }} | |||
* {{cite journal | vauthors = Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K | title = Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function | journal = Journal of Bone and Mineral Metabolism | volume = 25 | issue = 6 | pages = 407–13 | year = 2007 | pmid = 17968493 | doi = 10.1007/s00774-007-0776-6 }} | |||
*{{cite journal | * {{cite journal | vauthors = Ehnes C, Forster IC, Bacconi A, Kohler K, Biber J, Murer H | title = Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites | journal = The Journal of General Physiology | volume = 124 | issue = 5 | pages = 489–503 | date = November 2004 | pmid = 15504899 | pmc = 2234003 | doi = 10.1085/jgp.200409061 }} | ||
*{{cite journal | * {{cite journal | vauthors = Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H | title = PDZK1: I. a major scaffolder in brush borders of proximal tubular cells | journal = Kidney International | volume = 64 | issue = 5 | pages = 1733–45 | date = November 2003 | pmid = 14531806 | doi = 10.1046/j.1523-1755.2003.00266.x }} | ||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{NLM content}} | {{NLM content}} | ||
{{Membrane transport proteins}} | {{Membrane transport proteins}} | ||
[[Category:Solute carrier family]] | [[Category:Solute carrier family]] | ||
{{ | |||
{{membrane-protein-stub}} |
Latest revision as of 06:32, 11 September 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Sodium-dependent phosphate transport protein 2C is a protein that in humans is encoded by the SLC34A3 gene.[1][2][3][4]
Function
SLC34A3 contributes to the maintenance of inorganic phosphate concentration at the kidney.[4]
Interactions
SLC34A3 has been shown to interact with PDZK1.[5]
Clinical Correlation
A mutation in the SLC34A3 gene has been known to cause the autosomal recessive condition hereditary hypophophatemic rickets with hypercalciuria. This gene is correlated closely with SLC34A1, an analogue sodium phosphate cotransporter protein. Symptoms include renal phosphate wasting in addition to increase levels of 1,25-dihydroxyvitamin D (yields the hypercalcuria).[2]
See also
- SLC34A3+protein,+human at the US National Library of Medicine Medical Subject Headings (MeSH)
References
- ↑ Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (May 2002). "Growth-related renal type II Na/Pi cotransporter". The Journal of Biological Chemistry. 277 (22): 19665–72. doi:10.1074/jbc.M200943200. PMID 11880379.
- ↑ 2.0 2.1 Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (February 2006). "Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3". American Journal of Human Genetics. 78 (2): 193–201. doi:10.1086/499410. PMC 1380229. PMID 16358215.
- ↑ Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (February 2006). "SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis". American Journal of Human Genetics. 78 (2): 179–92. doi:10.1086/499409. PMC 1380228. PMID 16358214.
- ↑ 4.0 4.1 "Entrez Gene: SLC34A3 solute carrier family 34 (sodium phosphate), member 3".
- ↑ Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (November 2003). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney International. 64 (5): 1733–45. doi:10.1046/j.1523-1755.2003.00266.x. PMID 14531806.
Further reading
- Forster IC, Hernando N, Biber J, Murer H (November 2006). "Proximal tubular handling of phosphate: A molecular perspective". Kidney International. 70 (9): 1548–59. doi:10.1038/sj.ki.5001813. PMID 16955105.
- Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K (2007). "Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function". Journal of Bone and Mineral Metabolism. 25 (6): 407–13. doi:10.1007/s00774-007-0776-6. PMID 17968493.
- Ehnes C, Forster IC, Bacconi A, Kohler K, Biber J, Murer H (November 2004). "Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites". The Journal of General Physiology. 124 (5): 489–503. doi:10.1085/jgp.200409061. PMC 2234003. PMID 15504899.
- Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (November 2003). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney International. 64 (5): 1733–45. doi:10.1046/j.1523-1755.2003.00266.x. PMID 14531806.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
Stub icon | This membrane protein–related article is a stub. You can help Wikipedia by expanding it. |