MELK: Difference between revisions
Jump to navigation
Jump to search
(consistent citation formatting) |
Matt Pijoan (talk | contribs) m (1 revision imported) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | {{Infobox_gene}} | ||
'''Maternal embryonic leucine zipper kinase (MELK)''' is an [[enzyme]] that in humans is encoded by the ''MELK'' [[gene]].<ref name="pmid8724849">{{cite journal | vauthors = Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N | title = Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1 | journal = DNA Research | volume = 3 | issue = 1 | pages = 17–24 | date = February 1996 | pmid = 8724849 | pmc = | doi = 10.1093/dnares/3.1.17 }}</ref><ref name="pmid9136115">{{cite journal | vauthors = Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL | title = New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo | journal = Molecular Reproduction and Development | volume = 47 | issue = 2 | pages = 148–56 | date = June 1997 | pmid = 9136115 | pmc = | doi = 10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: MELK maternal embryonic leucine zipper kinase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9833| accessdate = }}</ref> MELK is a [[Serine/threonine-specific protein kinase|serine/threonine kinase]] belonging to the family of AMPK/snf1 protein kinases. MELK was first identified present as maternal mRNA in mouse embryos.<ref>{{cite journal | vauthors = Heyer BS, Kochanowski H, Solter D | title = Expression of Melk, a new protein kinase, during early mouse development | journal = Developmental Dynamics | volume = 215 | issue = 4 | pages = 344–51 | date = August 1999 | pmid = 10417823 | doi = 10.1002/(SICI)1097-0177(199908)215:43.0.CO;2-H }}</ref> MELK has been shown to involved in progression through the cell cycle, possibly linked to its interaction with CDC25B.<ref>{{cite journal | vauthors = Nakano I, Paucar AA, Bajpai R, Dougherty JD, Zewail A, Kelly TK, Kim KJ, Ou J, Groszer M, Imura T, Freije WA, Nelson SF, Sofroniew MV, Wu H, Liu X, Terskikh AV, Geschwind DH, Kornblum HI | title = Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation | journal = The Journal of Cell Biology | volume = 170 | issue = 3 | pages = 413–27 | date = August 2005 | pmid = 16061694 | pmc = 2171475 | doi = 10.1083/jcb.200412115 }}</ref> MELK expression is elevated in a number of cancers and is an active research target for pharmacological inhibition.<ref>{{cite journal | vauthors = Gray D, Jubb AM, Hogue D, Dowd P, Kljavin N, Yi S, Bai W, Frantz G, Zhang Z, Koeppen H, de Sauvage FJ, Davis DP | title = Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers | journal = Cancer Research | volume = 65 | issue = 21 | pages = 9751–61 | date = November 2005 | pmid = 16266996 | doi = 10.1158/0008-5472.CAN-04-4531 }}</ref> | '''Maternal embryonic leucine zipper kinase (MELK)''' is an [[enzyme]] that in humans is encoded by the ''MELK'' [[gene]].<ref name="pmid8724849">{{cite journal | vauthors = Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N | title = Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1 | journal = DNA Research | volume = 3 | issue = 1 | pages = 17–24 | date = February 1996 | pmid = 8724849 | pmc = | doi = 10.1093/dnares/3.1.17 }}</ref><ref name="pmid9136115">{{cite journal | vauthors = Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL | title = New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo | journal = Molecular Reproduction and Development | volume = 47 | issue = 2 | pages = 148–56 | date = June 1997 | pmid = 9136115 | pmc = | doi = 10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: MELK maternal embryonic leucine zipper kinase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9833| accessdate = }}</ref> MELK is a [[Serine/threonine-specific protein kinase|serine/threonine kinase]] belonging to the family of AMPK/snf1 protein kinases. MELK was first identified present as maternal mRNA in mouse embryos.<ref>{{cite journal | vauthors = Heyer BS, Kochanowski H, Solter D | title = Expression of Melk, a new protein kinase, during early mouse development | journal = Developmental Dynamics | volume = 215 | issue = 4 | pages = 344–51 | date = August 1999 | pmid = 10417823 | doi = 10.1002/(SICI)1097-0177(199908)215:43.0.CO;2-H }}</ref> MELK has been shown to involved in progression through the cell cycle, possibly linked to its interaction with CDC25B.<ref>{{cite journal | vauthors = Nakano I, Paucar AA, Bajpai R, Dougherty JD, Zewail A, Kelly TK, Kim KJ, Ou J, Groszer M, Imura T, Freije WA, Nelson SF, Sofroniew MV, Wu H, Liu X, Terskikh AV, Geschwind DH, Kornblum HI | title = Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation | journal = The Journal of Cell Biology | volume = 170 | issue = 3 | pages = 413–27 | date = August 2005 | pmid = 16061694 | pmc = 2171475 | doi = 10.1083/jcb.200412115 }}</ref> | ||
MELK expression is elevated in a number of cancers and is an active research target for pharmacological inhibition.<ref>{{cite journal | vauthors = Gray D, Jubb AM, Hogue D, Dowd P, Kljavin N, Yi S, Bai W, Frantz G, Zhang Z, Koeppen H, de Sauvage FJ, Davis DP | title = Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers | journal = Cancer Research | volume = 65 | issue = 21 | pages = 9751–61 | date = November 2005 | pmid = 16266996 | doi = 10.1158/0008-5472.CAN-04-4531 }}</ref> | |||
== Interactions == | == Interactions == |
Latest revision as of 07:36, 10 January 2019
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Maternal embryonic leucine zipper kinase (MELK) is an enzyme that in humans is encoded by the MELK gene.[1][2][3] MELK is a serine/threonine kinase belonging to the family of AMPK/snf1 protein kinases. MELK was first identified present as maternal mRNA in mouse embryos.[4] MELK has been shown to involved in progression through the cell cycle, possibly linked to its interaction with CDC25B.[5]
MELK expression is elevated in a number of cancers and is an active research target for pharmacological inhibition.[6]
Interactions
MELK has been shown to interact with CDC25B.[7]
References
- ↑ Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N (February 1996). "Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1". DNA Research. 3 (1): 17–24. doi:10.1093/dnares/3.1.17. PMID 8724849.
- ↑ Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL (June 1997). "New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo". Molecular Reproduction and Development. 47 (2): 148–56. doi:10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M. PMID 9136115.
- ↑ "Entrez Gene: MELK maternal embryonic leucine zipper kinase".
- ↑ Heyer BS, Kochanowski H, Solter D (August 1999). "Expression of Melk, a new protein kinase, during early mouse development". Developmental Dynamics. 215 (4): 344–51. doi:10.1002/(SICI)1097-0177(199908)215:43.0.CO;2-H. PMID 10417823.
- ↑ Nakano I, Paucar AA, Bajpai R, Dougherty JD, Zewail A, Kelly TK, Kim KJ, Ou J, Groszer M, Imura T, Freije WA, Nelson SF, Sofroniew MV, Wu H, Liu X, Terskikh AV, Geschwind DH, Kornblum HI (August 2005). "Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation". The Journal of Cell Biology. 170 (3): 413–27. doi:10.1083/jcb.200412115. PMC 2171475. PMID 16061694.
- ↑ Gray D, Jubb AM, Hogue D, Dowd P, Kljavin N, Yi S, Bai W, Frantz G, Zhang Z, Koeppen H, de Sauvage FJ, Davis DP (November 2005). "Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers". Cancer Research. 65 (21): 9751–61. doi:10.1158/0008-5472.CAN-04-4531. PMID 16266996.
- ↑ Davezac N, Baldin V, Blot J, Ducommun B, Tassan JP (October 2002). "Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation". Oncogene. 21 (50): 7630–41. doi:10.1038/sj.onc.1205870. PMID 12400006.
Further reading
- Lin ML, Park JH, Nishidate T, Nakamura Y, Katagiri T (2007). "Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family". Breast Cancer Research. 9 (1): R17. doi:10.1186/bcr1650. PMC 1851384. PMID 17280616.
- Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (November 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
- Beullens M, Vancauwenbergh S, Morrice N, Derua R, Ceulemans H, Waelkens E, Bollen M (December 2005). "Substrate specificity and activity regulation of protein kinase MELK". The Journal of Biological Chemistry. 280 (48): 40003–11. doi:10.1074/jbc.M507274200. PMID 16216881.
- Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH, Stalmans W, Bollen M (March 2004). "Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1". The Journal of Biological Chemistry. 279 (10): 8642–7. doi:10.1074/jbc.M311466200. PMID 14699119.
- Davezac N, Baldin V, Blot J, Ducommun B, Tassan JP (October 2002). "Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation". Oncogene. 21 (50): 7630–41. doi:10.1038/sj.onc.1205870. PMID 12400006.
- Seong HA, Gil M, Kim KT, Kim SJ, Ha H (February 2002). "Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine protein serine/threonine kinase 38 (MPK38)". The Biochemical Journal. 361 (Pt 3): 597–604. doi:10.1042/0264-6021:3610597. PMC 1222342. PMID 11802789.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Gil M, Yang Y, Lee Y, Choi I, Ha H (August 1997). "Cloning and expression of a cDNA encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells". Gene. 195 (2): 295–301. doi:10.1016/S0378-1119(97)00181-9. PMID 9305775.
- Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
This article on a gene on human chromosome 9 is a stub. You can help Wikipedia by expanding it. |