ACTC1: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
Matt Pijoan (talk | contribs) m (1 revision imported) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''ACTC1''' encodes '''cardiac muscle alpha actin'''.<ref name="pmid1639426">{{cite journal | vauthors = Kramer PL, Luty JA, Litt M | title = Regional localization of the gene for cardiac muscle actin (ACTC) on chromosome 15q | journal = Genomics | volume = 13 | issue = 3 | pages = 904–5 | date = Jul 1992 | pmid = 1639426 | pmc = | doi = 10.1016/0888-7543(92)90185-U }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: ACTC1 actin, alpha, cardiac muscle 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=70| accessdate = }}</ref> This isoform differs from the alpha actin that is expressed in skeletal muscle, [[ACTA1]]. Alpha cardiac actin is the major protein of the thin filament in cardiac sarcomeres, which are responsible for muscle contraction and generation of force to support the pump function of the heart. | ||
| | |||
| | |||
| | |||
}} | |||
== Structure == | |||
< | Cardiac alpha actin is a 42.0 kDa protein composed of 377 amino acids.<ref>{{cite web|title=Protein Information {{ndash}} Basic Information: Protein COPaKB ID: P68032|website=Cardiac Organellar Protein Atlas Knowledgebase|url=http://www.heartproteome.org/copa/ProteinInfo.aspx?QType=Protein%20ID&QValue=P68032}}</ref><ref name="pmid23965338">{{cite journal | vauthors = Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P | title = Integration of cardiac proteome biology and medicine by a specialized knowledgebase | journal = Circulation Research | volume = 113 | issue = 9 | pages = 1043–53 | date = Oct 2013 | pmid = 23965338 | pmc = 4076475 | doi = 10.1161/CIRCRESAHA.113.301151 }}</ref> Cardiac alpha actin is a filamentous protein extending from a complex mesh with cardiac alpha-actinin ([[ACTN2]]) at [[sarcomere|Z-lines]] towards the center of the [[sarcomere]]. Polymerization of globular actin [[actin|(G-actin)]] leads to a structural filament [[actin|(F-actin)]] in the form of a two-stranded [[helix]]. Each actin can bind to four others. The atomic structure of monomeric actin was solved by Kabsch et al.,<ref>{{cite journal | vauthors = Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC | title = Atomic structure of the actin:DNase I complex | journal = Nature | volume = 347 | issue = 6288 | pages = 37–44 | date = Sep 1990 | pmid = 2395459 | doi = 10.1038/347037a0 }}</ref> and closely thereafter this same group published the structure of the actin filament.<ref>{{cite journal | vauthors = Holmes KC, Popp D, Gebhard W, Kabsch W | title = Atomic model of the actin filament | journal = Nature | volume = 347 | issue = 6288 | pages = 44–9 | date = Sep 1990 | pmid = 2395461 | doi = 10.1038/347044a0 }}</ref> [[Actin]]s are highly conserved proteins; the alpha actins are found in muscle tissues and are a major constituent of the contractile apparatus. Cardiac (ACTC1) and skeletal ([[ACTA1]]) alpha actins differ by only four amino acids ([[Aspartate|Asp]]4[[Glutamate|Glu]], [[Glutamate|Glu]]5[[Aspartate|Asp]], [[Leucine|Leu]]301[[Methionine|Met]], [[Serine|Ser]]360[[Threonine|Thr]]; cardiac/skeletal). The actin monomer has two asymmetric domains; the larger inner domain comprised by sub-domains 3 and 4, and the smaller outer domain by sub-domains 1 and 2. Both the amino and [[C-terminus|carboxy-termini]] lie in sub-domain 1 of the outer domain. | ||
{{ | |||
| | |||
| | |||
== | == Function == | ||
{{ | |||
== | Actin is a dynamic structure that can adapt two states of flexibility, with the greatest difference between the states occurring as a result of movement within sub-domain 2.<ref>{{cite journal | vauthors = Egelman EH, Orlova A | title = New insights into actin filament dynamics | journal = Current Opinion in Structural Biology | volume = 5 | issue = 2 | pages = 172–80 | date = Apr 1995 | pmid = 7648318 | doi = 10.1016/0959-440x(95)80072-7 }}</ref> Myosin binding increases the flexibility of actin,<ref>{{cite journal | vauthors = Orlova A, Egelman EH | title = A conformational change in the actin subunit can change the flexibility of the actin filament | journal = Journal of Molecular Biology | volume = 232 | issue = 2 | pages = 334–41 | date = Jul 1993 | pmid = 8345515 | doi = 10.1006/jmbi.1993.1393 }}</ref> and cross-linking studies have shown that myosin subfragment-1 binds to actin amino acid residues 48-67 within actin sub-domain 2, which may account for this effect.<ref>{{cite journal | vauthors = Bertrand R, Derancourt J, Kassab R | title = The covalent maleimidobenzoyl-actin-myosin head complex. Cross-linking of the 50 kDa heavy chain region to actin subdomain-2 | journal = FEBS Letters | volume = 345 | issue = 2-3 | pages = 113–9 | date = May 1994 | pmid = 8200441 | doi = 10.1016/0014-5793(94)00398-x }}</ref> | ||
It has been suggested that the ''ACTC1'' gene has a role during development. Experiments in chick embryos found an association between ''ACTC1'' [[Gene knockdown|knockdown]] and a reduction in the [[Interatrial septum|atrial septa]].<ref name="Matsson 2008">{{cite journal | vauthors = Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegårdh J, Enell H, Jonzon A, Vikkula M, Gutierrez I, Granados-Riveron J, Pope M, Bu'Lock F, Cox J, Robinson TE, Song F, Brook DJ, Marston S, Trybus KM, Dahl N | title = Alpha-cardiac actin mutations produce atrial septal defects | journal = Human Molecular Genetics | volume = 17 | issue = 2 | pages = 256–65 | date = Jan 2008 | pmid = 17947298 | doi = 10.1093/hmg/ddm302 }}</ref> | |||
| | |||
== Clinical significance == | |||
Polymorphisms in ''ACTC1'' have been linked to [[Dilated Cardiomyopathy]] in a small number of Japanese patients.<ref>{{cite journal | title=Mutational analysis of the cardiac actin gene in familial and sporadic dilated cardiomyopathy. | author=Takai E | journal=Am J Med Genet |date=Oct 1999 | volume=86 | issue=4 | pages=325–7. | doi=10.1002/(sici)1096-8628(19991008)86:4<325::aid-ajmg5>3.0.co;2-u|display-authors=etal}}</ref> Further studies in patients from South Africa found no association.<ref>{{cite journal | title=Cardiac and skeletal actin gene mutations are not a common cause of dilated cardiomyopathy. | author=Mayosi BM | journal=J Med Genet |date=Oct 1999 | volume=36 | issue=10 | pages=796–7. | doi=10.1136/jmg.36.10.796|display-authors=etal| pmc=1734242 }}</ref> The E101K [[missense mutation]] has been associated with [[Hypertrophic Cardiomyopathy]]<ref>{{cite journal | vauthors = Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L | title = Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy | journal = Journal of Molecular and Cellular Cardiology | volume = 32 | issue = 9 | pages = 1687–94 | date = Sep 2000 | pmid = 10966831 | doi = 10.1006/jmcc.2000.1204 }}</ref><ref>{{cite journal | vauthors = Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, Barr S, Karim A, Olson TM, Kamisago M, Seidman JG, Seidman CE | title = Gene mutations in apical hypertrophic cardiomyopathy | journal = Circulation | volume = 112 | issue = 18 | pages = 2805–11 | date = Nov 2005 | pmid = 16267253 | doi = 10.1161/CIRCULATIONAHA.105.547448 }}</ref><ref>{{cite journal | vauthors = Monserrat L, Hermida-Prieto M, Fernandez X, Rodríguez I, Dumont C, Cazón L, Cuesta MG, Gonzalez-Juanatey C, Peteiro J, Alvarez N, Penas-Lado M, Castro-Beiras A | title = Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects | journal = European Heart Journal | volume = 28 | issue = 16 | pages = 1953–61 | date = Aug 2007 | pmid = 17611253 | doi = 10.1093/eurheartj/ehm239 }}</ref><ref>{{cite journal | vauthors = Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE | title = Shared genetic causes of cardiac hypertrophy in children and adults | journal = The New England Journal of Medicine | volume = 358 | issue = 18 | pages = 1899–908 | date = May 2008 | pmid = 18403758 | pmc = 2752150 | doi = 10.1056/NEJMoa075463 }}</ref> and [[Noncompaction cardiomyopathy|Left Ventricular Noncompaction]].<ref>{{cite journal | vauthors = Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hürlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L | title = Mutations in sarcomere protein genes in left ventricular noncompaction | journal = Circulation | volume = 117 | issue = 22 | pages = 2893–901 | date = Jun 2008 | pmid = 18506004 | doi = 10.1161/CIRCULATIONAHA.107.746164 }}</ref> Another mutation has in the ''ACTC1'' gene has been associated with [[atrial septal defect]]s.<ref name="Matsson 2008"/> | |||
{{clear}} | |||
== References == | |||
{{reflist|33em}} | |||
== Further reading == | |||
{{refbegin|33em}} | |||
* {{cite journal | vauthors = Snásel J, Pichová I | title = The cleavage of host cell proteins by HIV-1 protease | journal = Folia Biologica | volume = 42 | issue = 5 | pages = 227–30 | year = 1997 | pmid = 8997639 | doi = 10.1007/BF02818986 }} | |||
*{{cite journal | * {{cite journal | vauthors = Bearer EL, Prakash JM, Li Z | title = Actin dynamics in platelets | journal = International Review of Cytology | volume = 217 | issue = | pages = 137–82 | year = 2002 | pmid = 12019562 | pmc = 3376087 | doi = 10.1016/S0074-7696(02)17014-8 | isbn = 978-0-12-364621-7 | series = International Review of Cytology }} | ||
*{{cite journal | * {{cite journal | vauthors = Elzinga M, Maron BJ, Adelstein RS | title = Human heart and platelet actins are products of different genes | journal = Science | volume = 191 | issue = 4222 | pages = 94–5 | date = Jan 1976 | pmid = 1246600 | doi = 10.1126/science.1246600 }} | ||
*{{cite journal | * {{cite journal | vauthors = Adams LD, Tomasselli AG, Robbins P, Moss B, Heinrikson RL | title = HIV-1 protease cleaves actin during acute infection of human T-lymphocytes | journal = AIDS Research and Human Retroviruses | volume = 8 | issue = 2 | pages = 291–5 | date = Feb 1992 | pmid = 1540415 | doi = 10.1089/aid.1992.8.291 }} | ||
*{{cite journal | * {{cite journal | vauthors = Dawson SJ, White LA | title = Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin | journal = The Journal of Infection | volume = 24 | issue = 3 | pages = 317–20 | date = May 1992 | pmid = 1602151 | doi = 10.1016/S0163-4453(05)80037-4 }} | ||
*{{cite journal | * {{cite journal | vauthors = Watkins C, Bodfish P, Warne D, Nyberg K, Spurr NK | title = Dinucleotide repeat polymorphism in the human alpha-cardiac actin gene, intron IV (ACTC), detected using the polymerase chain reaction | journal = Nucleic Acids Research | volume = 19 | issue = 24 | pages = 6980 | date = Dec 1991 | pmid = 1762945 | pmc = 329379 | doi = 10.1093/nar/19.24.6980-a }} | ||
*{{cite journal | * {{cite journal | vauthors = Tomasselli AG, Hui JO, Adams L, Chosay J, Lowery D, Greenberg B, Yem A, Deibel MR, Zürcher-Neely H, Heinrikson RL | title = Actin, troponin C, Alzheimer amyloid precursor protein and pro-interleukin 1 beta as substrates of the protease from human immunodeficiency virus | journal = The Journal of Biological Chemistry | volume = 266 | issue = 22 | pages = 14548–53 | date = Aug 1991 | pmid = 1907279 | doi = }} | ||
*{{cite journal | * {{cite journal | vauthors = Shoeman RL, Kesselmier C, Mothes E, Höner B, Traub P | title = Non-viral cellular substrates for human immunodeficiency virus type 1 protease | journal = FEBS Letters | volume = 278 | issue = 2 | pages = 199–203 | date = Jan 1991 | pmid = 1991513 | doi = 10.1016/0014-5793(91)80116-K }} | ||
*{{cite journal | * {{cite journal | vauthors = Buckingham M, Alonso S, Barton P, Cohen A, Daubas P, Garner I, Robert B, Weydert A | title = Actin and myosin multigene families: their expression during the formation and maturation of striated muscle | journal = American Journal of Medical Genetics | volume = 25 | issue = 4 | pages = 623–34 | date = Dec 1986 | pmid = 3789022 | doi = 10.1002/ajmg.1320250405 }} | ||
}} | * {{cite journal | vauthors = Engel JN, Gunning PW, Kedes L | title = Isolation and characterization of human actin genes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 78 | issue = 8 | pages = 4674–8 | date = Aug 1981 | pmid = 6272269 | pmc = 320222 | doi = 10.1073/pnas.78.8.4674 }} | ||
* {{cite journal | vauthors = Humphries SE, Whittall R, Minty A, Buckingham M, Williamson R | title = There are approximately 20 actin gene in the human genome | journal = Nucleic Acids Research | volume = 9 | issue = 19 | pages = 4895–908 | date = Oct 1981 | pmid = 6273789 | pmc = 327487 | doi = 10.1093/nar/9.19.4895 }} | |||
* {{cite journal | vauthors = Hamada H, Petrino MG, Kakunaga T | title = Molecular structure and evolutionary origin of human cardiac muscle actin gene | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 79 | issue = 19 | pages = 5901–5 | date = Oct 1982 | pmid = 6310553 | pmc = 347018 | doi = 10.1073/pnas.79.19.5901 }} | |||
* {{cite journal | vauthors = Gunning P, Ponte P, Kedes L, Eddy R, Shows T | title = Chromosomal location of the co-expressed human skeletal and cardiac actin genes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 81 | issue = 6 | pages = 1813–7 | date = Mar 1984 | pmid = 6584914 | pmc = 345011 | doi = 10.1073/pnas.81.6.1813 }} | |||
* {{cite journal | vauthors = Gunning P, Ponte P, Blau H, Kedes L | title = alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart | journal = Molecular and Cellular Biology | volume = 3 | issue = 11 | pages = 1985–95 | date = Nov 1983 | pmid = 6689196 | pmc = 370066 | doi = 10.1128/mcb.3.11.1985}} | |||
* {{cite journal | vauthors = Ueyama H, Inazawa J, Ariyama T, Nishino H, Ochiai Y, Ohkubo I, Miwa T | title = Reexamination of chromosomal loci of human muscle actin genes by fluorescence in situ hybridization | journal = The Japanese Journal of Human Genetics | volume = 40 | issue = 1 | pages = 145–8 | date = Mar 1995 | pmid = 7780165 | doi = 10.1007/BF01874078 }} | |||
* {{cite journal | vauthors = Moroianu J, Riordan JF | title = Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 91 | issue = 5 | pages = 1677–81 | date = Mar 1994 | pmid = 8127865 | pmc = 43226 | doi = 10.1073/pnas.91.5.1677 }} | |||
* {{cite journal | vauthors = Dunwoodie SL, Joya JE, Arkell RM, Hardeman EC | title = Multiple regions of the human cardiac actin gene are necessary for maturation-based expression in striated muscle | journal = The Journal of Biological Chemistry | volume = 269 | issue = 16 | pages = 12212–9 | date = Apr 1994 | pmid = 8163527 | doi = }} | |||
* {{cite journal | vauthors = Shuster CB, Lin AY, Nayak R, Herman IM | title = Beta cap73: a novel beta actin-specific binding protein | journal = Cell Motility and the Cytoskeleton | volume = 35 | issue = 3 | pages = 175–87 | year = 1997 | pmid = 8913639 | doi = 10.1002/(SICI)1097-0169(1996)35:3<175::AID-CM1>3.0.CO;2-8 }} | |||
{{refend}} | {{refend}} | ||
{{ | == External links == | ||
{{ | * [http://www.heartproteome.org/copa/ProteinInfo.aspx?QType=Protein%20ID&QValue=P68032 Mass spectrometry characterization of human ACTC1 at COPaKB] | ||
* [https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=hyper-card GeneReviews/NIH/NCBI/UW entry on Familial Hypertrophic Cardiomyopathy Overview] | |||
* {{UCSC gene info|ACTC1}} | |||
{{PDB Gallery|geneid=70}} | |||
{{Cytoskeletal proteins}} | |||
[[Category:Human proteins]] |
Latest revision as of 12:43, 9 January 2019
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
ACTC1 encodes cardiac muscle alpha actin.[1][2] This isoform differs from the alpha actin that is expressed in skeletal muscle, ACTA1. Alpha cardiac actin is the major protein of the thin filament in cardiac sarcomeres, which are responsible for muscle contraction and generation of force to support the pump function of the heart.
Structure
Cardiac alpha actin is a 42.0 kDa protein composed of 377 amino acids.[3][4] Cardiac alpha actin is a filamentous protein extending from a complex mesh with cardiac alpha-actinin (ACTN2) at Z-lines towards the center of the sarcomere. Polymerization of globular actin (G-actin) leads to a structural filament (F-actin) in the form of a two-stranded helix. Each actin can bind to four others. The atomic structure of monomeric actin was solved by Kabsch et al.,[5] and closely thereafter this same group published the structure of the actin filament.[6] Actins are highly conserved proteins; the alpha actins are found in muscle tissues and are a major constituent of the contractile apparatus. Cardiac (ACTC1) and skeletal (ACTA1) alpha actins differ by only four amino acids (Asp4Glu, Glu5Asp, Leu301Met, Ser360Thr; cardiac/skeletal). The actin monomer has two asymmetric domains; the larger inner domain comprised by sub-domains 3 and 4, and the smaller outer domain by sub-domains 1 and 2. Both the amino and carboxy-termini lie in sub-domain 1 of the outer domain.
Function
Actin is a dynamic structure that can adapt two states of flexibility, with the greatest difference between the states occurring as a result of movement within sub-domain 2.[7] Myosin binding increases the flexibility of actin,[8] and cross-linking studies have shown that myosin subfragment-1 binds to actin amino acid residues 48-67 within actin sub-domain 2, which may account for this effect.[9]
It has been suggested that the ACTC1 gene has a role during development. Experiments in chick embryos found an association between ACTC1 knockdown and a reduction in the atrial septa.[10]
Clinical significance
Polymorphisms in ACTC1 have been linked to Dilated Cardiomyopathy in a small number of Japanese patients.[11] Further studies in patients from South Africa found no association.[12] The E101K missense mutation has been associated with Hypertrophic Cardiomyopathy[13][14][15][16] and Left Ventricular Noncompaction.[17] Another mutation has in the ACTC1 gene has been associated with atrial septal defects.[10]
References
- ↑ Kramer PL, Luty JA, Litt M (Jul 1992). "Regional localization of the gene for cardiac muscle actin (ACTC) on chromosome 15q". Genomics. 13 (3): 904–5. doi:10.1016/0888-7543(92)90185-U. PMID 1639426.
- ↑ "Entrez Gene: ACTC1 actin, alpha, cardiac muscle 1".
- ↑ "Protein Information – Basic Information: Protein COPaKB ID: P68032". Cardiac Organellar Protein Atlas Knowledgebase.
- ↑ Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (Oct 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
- ↑ Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (Sep 1990). "Atomic structure of the actin:DNase I complex". Nature. 347 (6288): 37–44. doi:10.1038/347037a0. PMID 2395459.
- ↑ Holmes KC, Popp D, Gebhard W, Kabsch W (Sep 1990). "Atomic model of the actin filament". Nature. 347 (6288): 44–9. doi:10.1038/347044a0. PMID 2395461.
- ↑ Egelman EH, Orlova A (Apr 1995). "New insights into actin filament dynamics". Current Opinion in Structural Biology. 5 (2): 172–80. doi:10.1016/0959-440x(95)80072-7. PMID 7648318.
- ↑ Orlova A, Egelman EH (Jul 1993). "A conformational change in the actin subunit can change the flexibility of the actin filament". Journal of Molecular Biology. 232 (2): 334–41. doi:10.1006/jmbi.1993.1393. PMID 8345515.
- ↑ Bertrand R, Derancourt J, Kassab R (May 1994). "The covalent maleimidobenzoyl-actin-myosin head complex. Cross-linking of the 50 kDa heavy chain region to actin subdomain-2". FEBS Letters. 345 (2–3): 113–9. doi:10.1016/0014-5793(94)00398-x. PMID 8200441.
- ↑ 10.0 10.1 Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegårdh J, Enell H, Jonzon A, Vikkula M, Gutierrez I, Granados-Riveron J, Pope M, Bu'Lock F, Cox J, Robinson TE, Song F, Brook DJ, Marston S, Trybus KM, Dahl N (Jan 2008). "Alpha-cardiac actin mutations produce atrial septal defects". Human Molecular Genetics. 17 (2): 256–65. doi:10.1093/hmg/ddm302. PMID 17947298.
- ↑ Takai E; et al. (Oct 1999). "Mutational analysis of the cardiac actin gene in familial and sporadic dilated cardiomyopathy". Am J Med Genet. 86 (4): 325–7. doi:10.1002/(sici)1096-8628(19991008)86:4<325::aid-ajmg5>3.0.co;2-u.
- ↑ Mayosi BM; et al. (Oct 1999). "Cardiac and skeletal actin gene mutations are not a common cause of dilated cardiomyopathy". J Med Genet. 36 (10): 796–7. doi:10.1136/jmg.36.10.796. PMC 1734242.
- ↑ Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L (Sep 2000). "Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy". Journal of Molecular and Cellular Cardiology. 32 (9): 1687–94. doi:10.1006/jmcc.2000.1204. PMID 10966831.
- ↑ Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, Barr S, Karim A, Olson TM, Kamisago M, Seidman JG, Seidman CE (Nov 2005). "Gene mutations in apical hypertrophic cardiomyopathy". Circulation. 112 (18): 2805–11. doi:10.1161/CIRCULATIONAHA.105.547448. PMID 16267253.
- ↑ Monserrat L, Hermida-Prieto M, Fernandez X, Rodríguez I, Dumont C, Cazón L, Cuesta MG, Gonzalez-Juanatey C, Peteiro J, Alvarez N, Penas-Lado M, Castro-Beiras A (Aug 2007). "Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects". European Heart Journal. 28 (16): 1953–61. doi:10.1093/eurheartj/ehm239. PMID 17611253.
- ↑ Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE (May 2008). "Shared genetic causes of cardiac hypertrophy in children and adults". The New England Journal of Medicine. 358 (18): 1899–908. doi:10.1056/NEJMoa075463. PMC 2752150. PMID 18403758.
- ↑ Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hürlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L (Jun 2008). "Mutations in sarcomere protein genes in left ventricular noncompaction". Circulation. 117 (22): 2893–901. doi:10.1161/CIRCULATIONAHA.107.746164. PMID 18506004.
Further reading
- Snásel J, Pichová I (1997). "The cleavage of host cell proteins by HIV-1 protease". Folia Biologica. 42 (5): 227–30. doi:10.1007/BF02818986. PMID 8997639.
- Bearer EL, Prakash JM, Li Z (2002). "Actin dynamics in platelets". International Review of Cytology. International Review of Cytology. 217: 137–82. doi:10.1016/S0074-7696(02)17014-8. ISBN 978-0-12-364621-7. PMC 3376087. PMID 12019562.
- Elzinga M, Maron BJ, Adelstein RS (Jan 1976). "Human heart and platelet actins are products of different genes". Science. 191 (4222): 94–5. doi:10.1126/science.1246600. PMID 1246600.
- Adams LD, Tomasselli AG, Robbins P, Moss B, Heinrikson RL (Feb 1992). "HIV-1 protease cleaves actin during acute infection of human T-lymphocytes". AIDS Research and Human Retroviruses. 8 (2): 291–5. doi:10.1089/aid.1992.8.291. PMID 1540415.
- Dawson SJ, White LA (May 1992). "Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin". The Journal of Infection. 24 (3): 317–20. doi:10.1016/S0163-4453(05)80037-4. PMID 1602151.
- Watkins C, Bodfish P, Warne D, Nyberg K, Spurr NK (Dec 1991). "Dinucleotide repeat polymorphism in the human alpha-cardiac actin gene, intron IV (ACTC), detected using the polymerase chain reaction". Nucleic Acids Research. 19 (24): 6980. doi:10.1093/nar/19.24.6980-a. PMC 329379. PMID 1762945.
- Tomasselli AG, Hui JO, Adams L, Chosay J, Lowery D, Greenberg B, Yem A, Deibel MR, Zürcher-Neely H, Heinrikson RL (Aug 1991). "Actin, troponin C, Alzheimer amyloid precursor protein and pro-interleukin 1 beta as substrates of the protease from human immunodeficiency virus". The Journal of Biological Chemistry. 266 (22): 14548–53. PMID 1907279.
- Shoeman RL, Kesselmier C, Mothes E, Höner B, Traub P (Jan 1991). "Non-viral cellular substrates for human immunodeficiency virus type 1 protease". FEBS Letters. 278 (2): 199–203. doi:10.1016/0014-5793(91)80116-K. PMID 1991513.
- Buckingham M, Alonso S, Barton P, Cohen A, Daubas P, Garner I, Robert B, Weydert A (Dec 1986). "Actin and myosin multigene families: their expression during the formation and maturation of striated muscle". American Journal of Medical Genetics. 25 (4): 623–34. doi:10.1002/ajmg.1320250405. PMID 3789022.
- Engel JN, Gunning PW, Kedes L (Aug 1981). "Isolation and characterization of human actin genes". Proceedings of the National Academy of Sciences of the United States of America. 78 (8): 4674–8. doi:10.1073/pnas.78.8.4674. PMC 320222. PMID 6272269.
- Humphries SE, Whittall R, Minty A, Buckingham M, Williamson R (Oct 1981). "There are approximately 20 actin gene in the human genome". Nucleic Acids Research. 9 (19): 4895–908. doi:10.1093/nar/9.19.4895. PMC 327487. PMID 6273789.
- Hamada H, Petrino MG, Kakunaga T (Oct 1982). "Molecular structure and evolutionary origin of human cardiac muscle actin gene". Proceedings of the National Academy of Sciences of the United States of America. 79 (19): 5901–5. doi:10.1073/pnas.79.19.5901. PMC 347018. PMID 6310553.
- Gunning P, Ponte P, Kedes L, Eddy R, Shows T (Mar 1984). "Chromosomal location of the co-expressed human skeletal and cardiac actin genes". Proceedings of the National Academy of Sciences of the United States of America. 81 (6): 1813–7. doi:10.1073/pnas.81.6.1813. PMC 345011. PMID 6584914.
- Gunning P, Ponte P, Blau H, Kedes L (Nov 1983). "alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart". Molecular and Cellular Biology. 3 (11): 1985–95. doi:10.1128/mcb.3.11.1985. PMC 370066. PMID 6689196.
- Ueyama H, Inazawa J, Ariyama T, Nishino H, Ochiai Y, Ohkubo I, Miwa T (Mar 1995). "Reexamination of chromosomal loci of human muscle actin genes by fluorescence in situ hybridization". The Japanese Journal of Human Genetics. 40 (1): 145–8. doi:10.1007/BF01874078. PMID 7780165.
- Moroianu J, Riordan JF (Mar 1994). "Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity". Proceedings of the National Academy of Sciences of the United States of America. 91 (5): 1677–81. doi:10.1073/pnas.91.5.1677. PMC 43226. PMID 8127865.
- Dunwoodie SL, Joya JE, Arkell RM, Hardeman EC (Apr 1994). "Multiple regions of the human cardiac actin gene are necessary for maturation-based expression in striated muscle". The Journal of Biological Chemistry. 269 (16): 12212–9. PMID 8163527.
- Shuster CB, Lin AY, Nayak R, Herman IM (1997). "Beta cap73: a novel beta actin-specific binding protein". Cell Motility and the Cytoskeleton. 35 (3): 175–87. doi:10.1002/(SICI)1097-0169(1996)35:3<175::AID-CM1>3.0.CO;2-8. PMID 8913639.
External links
- Mass spectrometry characterization of human ACTC1 at COPaKB
- GeneReviews/NIH/NCBI/UW entry on Familial Hypertrophic Cardiomyopathy Overview
- Human ACTC1 genome location and ACTC1 gene details page in the UCSC Genome Browser.