FANCL: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
imported>CitationCleanerBot
m (→‎Function: cleanup)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''E3 ubiquitin-protein ligase FANCL''' is an [[enzyme]] that in humans is encoded by the ''FANCL'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FANCL Fanconi anemia, complementation group L| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55120| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Fanconi anemia, complementation group L
| HGNCid = 20748
| Symbol = FANCL
| AltSymbols =; FLJ10335; PHF9; POG
| OMIM = 608111
| ECnumber = 
| Homologene = 9987
| MGIid = 1914280
| GeneAtlas_image1 = PBB_GE_FANCL_218397_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0016874 |text = ligase activity}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005635 |text = nuclear envelope}}
| Process = {{GNF_GO|id=GO:0006281 |text = DNA repair}} {{GNF_GO|id=GO:0006512 |text = ubiquitin cycle}} {{GNF_GO|id=GO:0007276 |text = gamete generation}} {{GNF_GO|id=GO:0042127 |text = regulation of cell proliferation}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 55120
    | Hs_Ensembl = ENSG00000115392
    | Hs_RefseqProtein = NP_060532
    | Hs_RefseqmRNA = NM_018062
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 2
    | Hs_GenLoc_start = 58239884
    | Hs_GenLoc_end = 58322018
    | Hs_Uniprot = Q9NW38
    | Mm_EntrezGene = 67030
    | Mm_Ensembl = ENSMUSG00000004018
    | Mm_RefseqmRNA = XM_977417
    | Mm_RefseqProtein = XP_982511
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 11
    | Mm_GenLoc_start = 26287084
    | Mm_GenLoc_end = 26371876
    | Mm_Uniprot = Q9CR14
  }}
}}
'''Fanconi anemia, complementation group L''', also known as '''FANCL''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FANCL Fanconi anemia, complementation group L| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55120| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
Line 53: Line 7:
| summary_text =  
| summary_text =  
}}
}}
== Function ==
[[File:Homologous recombinational repair of DNA double-strand damage.jpg|thumb|300px|'''Recombinational repair of DNA double-strand damage - some key steps.'''  [[Ataxia telangiectasia mutated|ATM]] (ATM) is a [[protein kinase]] that is recruited and activated by [[DNA repair#Double-strand breaks|DNA double-strand breaks]].  DNA double-strand damages also activate the [[FANC proteins|Fanconi anemia core complex]] (FANCA/B/C/E/F/G/L/M).<ref name=Andrea>{{cite journal |vauthors=D'Andrea AD |title=Susceptibility pathways in Fanconi's anemia and breast cancer |journal=N. Engl. J. Med. |volume=362 |issue=20 |pages=1909–19 |year=2010 |pmid=20484397 |pmc=3069698 |doi=10.1056/NEJMra0809889 |url=}}</ref>  The FA core complex [[ubiquitin|monoubiquitinates]] the downstream targets FANCD2 and FANCI.<ref name="pmid19633289">{{cite journal |vauthors=Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME |title=The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways |journal=J. Biol. Chem. |volume=284 |issue=38 |pages=25560–8 |year=2009 |pmid=19633289 |pmc=2757957 |doi=10.1074/jbc.M109.007690 |url=}}</ref>  ATM activates (phosphorylates) [[CHEK2]] and [[FANCD2]]<ref name=Castillo>{{cite journal |vauthors=Castillo P, Bogliolo M, Surralles J |title=Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage |journal=DNA Repair (Amst.) |volume=10 |issue=5 |pages=518–25 |year=2011 |pmid=21466974 |doi=10.1016/j.dnarep.2011.02.007 |url=}}</ref>  CHEK2 phosphorylates BRCA1.<ref name="pmid21088254">{{cite journal |vauthors=Stolz A, Ertych N, Bastians H |title=Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability |journal=Clin. Cancer Res. |volume=17 |issue=3 |pages=401–5 |year=2011 |pmid=21088254 |doi=10.1158/1078-0432.CCR-10-1215 |url=}}</ref>  Ubiquinated FANCD2 complexes with [[BRCA1]] and [[RAD51]].<ref name="pmid12239151">{{cite journal |vauthors=Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD |title=S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51 |journal=Blood |volume=100 |issue=7 |pages=2414–20 |year=2002 |pmid=12239151 |doi=10.1182/blood-2002-01-0278 |url=}}</ref>  The PALB2 protein acts as a hub,<ref name="pmid24998779">{{cite journal |vauthors=Park JY, Zhang F, Andreassen PR |title=PALB2: the hub of a network of tumor suppressors involved in DNA damage responses |journal=Biochim. Biophys. Acta |volume=1846 |issue=1 |pages=263–75 |year=2014 |pmid=24998779 |pmc=4183126 |doi=10.1016/j.bbcan.2014.06.003 |url=}}</ref> bringing together BRCA1, BRCA2 and RAD51 at the site of a DNA double-strand break, and also binds to RAD51C, a member of the RAD51 paralog complex [[RAD51L1|RAD51B]]-[[RAD51C]]-[[RAD51L3|RAD51D]]-[[XRCC2]] (BCDX2).  The BCDX2 complex is responsible for RAD51 recruitment or stabilization at damage sites.<ref name=Chun>{{cite journal |vauthors=Chun J, Buechelmaier ES, Powell SN |title=Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway |journal=Mol. Cell. Biol. |volume=33 |issue=2 |pages=387–95 |year=2013 |pmid=23149936 |pmc=3554112 |doi=10.1128/MCB.00465-12 |url=}}</ref>  [[RAD51]] plays a major role in [[homologous recombination]]al repair of DNA during double strand break repair. In this process, an ATP dependent DNA strand exchange takes place in which a single strand invades base-paired strands of homologous DNA molecules.  RAD51 is involved in the search for homology and strand pairing stages of the process.]]
The clinical phenotype of mutational defects in all [[Fanconi anemia]] (FA) complementation groups is similar.  This phenotype is characterized by progressive bone marrow failure, cancer proneness and typical birth defects.<ref>{{Cite journal|last=Walden|first=Helen|last2=Deans|first2=Andrew J.|date=2014|title=The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder|journal=Annual Review of Biophysics|volume=43|pages=257–278|doi=10.1146/annurev-biophys-051013-022737|issn=1936-1238|pmid=24773018}}</ref>  The main cellular phenotype is hypersensitivity to DNA damage, particularly [[Crosslinking of DNA|inter-strand DNA crosslinks]].<ref>{{Cite journal|last=Deans|first=Andrew J.|last2=West|first2=Stephen C.|date=2011-06-24|title=DNA interstrand crosslink repair and cancer|journal=Nature Reviews. Cancer|volume=11|issue=7|pages=467–480|doi=10.1038/nrc3088|issn=1474-1768|pmc=3560328|pmid=21701511}}</ref>  The FA proteins interact through a multi-protein pathway.  DNA interstrand crosslinks are highly deleterious damages that are repaired by [[homologous recombination]] involving coordination of FA proteins and ''breast cancer susceptibility gene 1 ([[BRCA1]])''.
The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL).  A critical step in the pathway is the monoubiquitination of [[FANCD2]] by the RING E3 ligase FANCL. FANCL comprises 3 domains, a [[RING finger domain|RING]] domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain that interacts with [[FANCB]].<ref>{{Cite journal|last=van Twest|first=Sylvie|last2=Murphy|first2=Vincent J.|last3=Hodson|first3=Charlotte|last4=Tan|first4=Winnie|last5=Swuec|first5=Paolo|last6=O'Rourke|first6=Julienne J.|last7=Heierhorst|first7=Jörg|last8=Crismani|first8=Wayne|last9=Deans|first9=Andrew J.|date=2017-01-19|title=Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway|journal=Molecular Cell|volume=65|issue=2|pages=247–259|doi=10.1016/j.molcel.2016.11.005|issn=1097-4164|pmid=27986371}}</ref> The ELF domain of FANCL is also required to mediate a non-covalent interaction
between FANCL and [[ubiquitin]]. The ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of FANCB and ubiquitin binding by FANCL in vivo.<ref name="pmid26149689">{{cite journal |vauthors=Miles JA, Frost MG, Carroll E, Rowe ML, Howard MJ, Sidhu A, Chaugule VK, Alpi AF, Walden H |title=The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL |journal=J. Biol. Chem. |volume=290 |issue=34 |pages=20995–1006 |year=2015 |pmid=26149689 |pmc=4543658 |doi=10.1074/jbc.M115.675835 |url=}}</ref>
A nuclear complex containing FANCL (as well as [[FANCA]], [[FANCB]], [[Fanconi anemia, complementation group C|FANCC]], [[FANCE]], [[FANCF]], [[FANCG]] and [[FANCM]]) is essential for the activation of the [[FANCD2]] protein to the [[Ubiquitin|mono-ubiquitinated]] isoform.<ref name=Andrea />  In normal, non-mutant, cells FANCD2 is mono-ubiquinated in response to DNA damage.  Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at [[ionizing radiation]]-induced foci and in [[synaptonemal complex]]es of [[meiosis|meiotic]] chromosomes (see Figure: Recombinational repair of double strand damage).


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal  | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal  | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}}
*{{cite journal  | author=Agoulnik AI, Lu B, Zhu Q, ''et al.'' |title=A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. |journal=Hum. Mol. Genet. |volume=11 |issue= 24 |pages= 3047-53 |year= 2003 |pmid= 12417526 |doi=  }}
*{{cite journal  | vauthors=Agoulnik AI, Lu B, Zhu Q |title=A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd |journal=Hum. Mol. Genet. |volume=11 |issue= 24 |pages= 3047–53 |year= 2003 |pmid= 12417526 |doi=10.1093/hmg/11.24.3047 |display-authors=etal}}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Lu B, Bishop CE |title=Mouse GGN1 and GGN3, two germ cell-specific proteins from the single gene Ggn, interact with mouse POG and play a role in spermatogenesis. |journal=J. Biol. Chem. |volume=278 |issue= 18 |pages= 16289-96 |year= 2003 |pmid= 12574169 |doi= 10.1074/jbc.M211023200 }}
*{{cite journal  | vauthors=Lu B, Bishop CE |title=Mouse GGN1 and GGN3, two germ cell-specific proteins from the single gene Ggn, interact with mouse POG and play a role in spermatogenesis |journal=J. Biol. Chem. |volume=278 |issue= 18 |pages= 16289–96 |year= 2003 |pmid= 12574169 |doi= 10.1074/jbc.M211023200 }}
*{{cite journal  | author=Lu B, Bishop CE |title=Late onset of spermatogenesis and gain of fertility in POG-deficient mice indicate that POG is not necessary for the proliferation of spermatogonia. |journal=Biol. Reprod. |volume=69 |issue= 1 |pages= 161-8 |year= 2004 |pmid= 12606378 |doi= 10.1095/biolreprod.102.014654 }}
*{{cite journal  | vauthors=Lu B, Bishop CE |title=Late onset of spermatogenesis and gain of fertility in POG-deficient mice indicate that POG is not necessary for the proliferation of spermatogonia |journal=Biol. Reprod. |volume=69 |issue= 1 |pages= 161–8 |year= 2004 |pmid= 12606378 |doi= 10.1095/biolreprod.102.014654 }}
*{{cite journal  | author=Meetei AR, Sechi S, Wallisch M, ''et al.'' |title=A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. |journal=Mol. Cell. Biol. |volume=23 |issue= 10 |pages= 3417-26 |year= 2003 |pmid= 12724401 |doi=  }}
*{{cite journal  | vauthors=Meetei AR, Sechi S, Wallisch M |title=A Multiprotein Nuclear Complex Connects Fanconi Anemia and Bloom Syndrome |journal=Mol. Cell. Biol. |volume=23 |issue= 10 |pages= 3417–26 |year= 2003 |pmid= 12724401 |doi=10.1128/MCB.23.10.3417-3426.2003  | pmc=164758 |display-authors=etal}}
*{{cite journal  | author=Meetei AR, de Winter JP, Medhurst AL, ''et al.'' |title=A novel ubiquitin ligase is deficient in Fanconi anemia. |journal=Nat. Genet. |volume=35 |issue= 2 |pages= 165-70 |year= 2003 |pmid= 12973351 |doi= 10.1038/ng1241 }}
*{{cite journal  | vauthors=Meetei AR, de Winter JP, Medhurst AL |title=A novel ubiquitin ligase is deficient in Fanconi anemia |journal=Nat. Genet. |volume=35 |issue= 2 |pages= 165–70 |year= 2003 |pmid= 12973351 |doi= 10.1038/ng1241 |display-authors=etal}}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}}
*{{cite journal  | author=Meetei AR, Levitus M, Xue Y, ''et al.'' |title=X-linked inheritance of Fanconi anemia complementation group B. |journal=Nat. Genet. |volume=36 |issue= 11 |pages= 1219-24 |year= 2004 |pmid= 15502827 |doi= 10.1038/ng1458 }}
*{{cite journal  | vauthors=Meetei AR, Levitus M, Xue Y |title=X-linked inheritance of Fanconi anemia complementation group B |journal=Nat. Genet. |volume=36 |issue= 11 |pages= 1219–24 |year= 2004 |pmid= 15502827 |doi= 10.1038/ng1458 |display-authors=etal}}
*{{cite journal  | author=Hillier LW, Graves TA, Fulton RS, ''et al.'' |title=Generation and annotation of the DNA sequences of human chromosomes 2 and 4. |journal=Nature |volume=434 |issue= 7034 |pages= 724-31 |year= 2005 |pmid= 15815621 |doi= 10.1038/nature03466 }}
*{{cite journal  | vauthors=Hillier LW, Graves TA, Fulton RS |title=Generation and annotation of the DNA sequences of human chromosomes 2 and 4 |journal=Nature |volume=434 |issue= 7034 |pages= 724–31 |year= 2005 |pmid= 15815621 |doi= 10.1038/nature03466 |display-authors=etal}}
*{{cite journal  | author=Meetei AR, Medhurst AL, Ling C, ''et al.'' |title=A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. |journal=Nat. Genet. |volume=37 |issue= 9 |pages= 958-63 |year= 2005 |pmid= 16116422 |doi= 10.1038/ng1626 }}
*{{cite journal  | vauthors=Meetei AR, Medhurst AL, Ling C |title=A Human Orthologue of Archaeal DNA Repair Protein Hef is Defective in Fanconi Anemia Complementation Group M |journal=Nat. Genet. |volume=37 |issue= 9 |pages= 958–63 |year= 2005 |pmid= 16116422 |doi= 10.1038/ng1626 | pmc=2704909 |display-authors=etal}}
*{{cite journal  | author=Gurtan AM, Stuckert P, D'Andrea AD |title=The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly. |journal=J. Biol. Chem. |volume=281 |issue= 16 |pages= 10896-905 |year= 2006 |pmid= 16474167 |doi= 10.1074/jbc.M511411200 }}
*{{cite journal  | vauthors=Gurtan AM, Stuckert P, D'Andrea AD |title=The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly |journal=J. Biol. Chem. |volume=281 |issue= 16 |pages= 10896–905 |year= 2006 |pmid= 16474167 |doi= 10.1074/jbc.M511411200 }}
*{{cite journal  | author=Zhang J, Wang X, Lin CJ, ''et al.'' |title=Altered expression of FANCL confers mitomycin C sensitivity in Calu-6 lung cancer cells. |journal=Cancer Biol. Ther. |volume=5 |issue= 12 |pages= 1632-6 |year= 2007 |pmid= 17106252 |doi=  }}
*{{cite journal  | vauthors=Zhang J, Wang X, Lin CJ |title=Altered expression of FANCL confers mitomycin C sensitivity in Calu-6 lung cancer cells |journal=Cancer Biol. Ther. |volume=5 |issue= 12 |pages= 1632–6 |year= 2007 |pmid= 17106252 |doi=  10.4161/cbt.5.12.3351|display-authors=etal}}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
{{Posttranslational modification}}

Latest revision as of 13:59, 26 June 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

E3 ubiquitin-protein ligase FANCL is an enzyme that in humans is encoded by the FANCL gene.[1]


Function

File:Homologous recombinational repair of DNA double-strand damage.jpg
Recombinational repair of DNA double-strand damage - some key steps. ATM (ATM) is a protein kinase that is recruited and activated by DNA double-strand breaks. DNA double-strand damages also activate the Fanconi anemia core complex (FANCA/B/C/E/F/G/L/M).[2] The FA core complex monoubiquitinates the downstream targets FANCD2 and FANCI.[3] ATM activates (phosphorylates) CHEK2 and FANCD2[4] CHEK2 phosphorylates BRCA1.[5] Ubiquinated FANCD2 complexes with BRCA1 and RAD51.[6] The PALB2 protein acts as a hub,[7] bringing together BRCA1, BRCA2 and RAD51 at the site of a DNA double-strand break, and also binds to RAD51C, a member of the RAD51 paralog complex RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2). The BCDX2 complex is responsible for RAD51 recruitment or stabilization at damage sites.[8] RAD51 plays a major role in homologous recombinational repair of DNA during double strand break repair. In this process, an ATP dependent DNA strand exchange takes place in which a single strand invades base-paired strands of homologous DNA molecules. RAD51 is involved in the search for homology and strand pairing stages of the process.

The clinical phenotype of mutational defects in all Fanconi anemia (FA) complementation groups is similar. This phenotype is characterized by progressive bone marrow failure, cancer proneness and typical birth defects.[9] The main cellular phenotype is hypersensitivity to DNA damage, particularly inter-strand DNA crosslinks.[10] The FA proteins interact through a multi-protein pathway. DNA interstrand crosslinks are highly deleterious damages that are repaired by homologous recombination involving coordination of FA proteins and breast cancer susceptibility gene 1 (BRCA1).

The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain that interacts with FANCB.[11] The ELF domain of FANCL is also required to mediate a non-covalent interaction between FANCL and ubiquitin. The ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of FANCB and ubiquitin binding by FANCL in vivo.[12]

A nuclear complex containing FANCL (as well as FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCM) is essential for the activation of the FANCD2 protein to the mono-ubiquitinated isoform.[2] In normal, non-mutant, cells FANCD2 is mono-ubiquinated in response to DNA damage. Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes (see Figure: Recombinational repair of double strand damage).

References

  1. "Entrez Gene: FANCL Fanconi anemia, complementation group L".
  2. 2.0 2.1 D'Andrea AD (2010). "Susceptibility pathways in Fanconi's anemia and breast cancer". N. Engl. J. Med. 362 (20): 1909–19. doi:10.1056/NEJMra0809889. PMC 3069698. PMID 20484397.
  3. Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME (2009). "The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways". J. Biol. Chem. 284 (38): 25560–8. doi:10.1074/jbc.M109.007690. PMC 2757957. PMID 19633289.
  4. Castillo P, Bogliolo M, Surralles J (2011). "Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage". DNA Repair (Amst.). 10 (5): 518–25. doi:10.1016/j.dnarep.2011.02.007. PMID 21466974.
  5. Stolz A, Ertych N, Bastians H (2011). "Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability". Clin. Cancer Res. 17 (3): 401–5. doi:10.1158/1078-0432.CCR-10-1215. PMID 21088254.
  6. Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD (2002). "S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51". Blood. 100 (7): 2414–20. doi:10.1182/blood-2002-01-0278. PMID 12239151.
  7. Park JY, Zhang F, Andreassen PR (2014). "PALB2: the hub of a network of tumor suppressors involved in DNA damage responses". Biochim. Biophys. Acta. 1846 (1): 263–75. doi:10.1016/j.bbcan.2014.06.003. PMC 4183126. PMID 24998779.
  8. Chun J, Buechelmaier ES, Powell SN (2013). "Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway". Mol. Cell. Biol. 33 (2): 387–95. doi:10.1128/MCB.00465-12. PMC 3554112. PMID 23149936.
  9. Walden, Helen; Deans, Andrew J. (2014). "The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder". Annual Review of Biophysics. 43: 257–278. doi:10.1146/annurev-biophys-051013-022737. ISSN 1936-1238. PMID 24773018.
  10. Deans, Andrew J.; West, Stephen C. (2011-06-24). "DNA interstrand crosslink repair and cancer". Nature Reviews. Cancer. 11 (7): 467–480. doi:10.1038/nrc3088. ISSN 1474-1768. PMC 3560328. PMID 21701511.
  11. van Twest, Sylvie; Murphy, Vincent J.; Hodson, Charlotte; Tan, Winnie; Swuec, Paolo; O'Rourke, Julienne J.; Heierhorst, Jörg; Crismani, Wayne; Deans, Andrew J. (2017-01-19). "Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway". Molecular Cell. 65 (2): 247–259. doi:10.1016/j.molcel.2016.11.005. ISSN 1097-4164. PMID 27986371.
  12. Miles JA, Frost MG, Carroll E, Rowe ML, Howard MJ, Sidhu A, Chaugule VK, Alpi AF, Walden H (2015). "The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL". J. Biol. Chem. 290 (34): 20995–1006. doi:10.1074/jbc.M115.675835. PMC 4543658. PMID 26149689.

Further reading