Heat shock 70 kDa protein 8 also known as heat shock cognate 71 kDa protein or Hsc70 or Hsp73 is a heat shock protein that in humans is encoded by the HSPA8gene on chromosome 11.[1] As a member of the heat shock protein 70 family and a chaperone protein, it facilitates the proper folding of newly translated and misfolded proteins, as well as stabilize or degrade mutant proteins.[1][2] Its functions contribute to biological processes including signal transduction, apoptosis, autophagy, protein homeostasis, and cell growth and differentiation.[2][3][4] It has been associated with an extensive number of cancers, neurodegenerative diseases, cell senescence, and aging.[2][3]
This gene encodes a 70kDa heat shock protein which is a member of the heat shock protein 70 (Hsp70) family.[1] As a Hsp70 protein, it has a C-terminal protein substrate-binding domain and an N-terminalATP-binding domain.[5][6][7]
The substrate-binding domain consists of two subdomains, a two-layered β-sandwich subdomain (SBDβ) and an α-helical subdomain (SBDα), which are connected by the loop Lα,β. SBDβ contains the peptide binding pocket while SBDα serves as a lid to cover the substrate binding cleft. The ATP binding domain consists of four subdomains split into two lobes by a central ATP/ADP binding pocket. The two terminal domains are linked together by a conserved region referred to as loop LL,1, which is critical for allosteric regulation. The unstructured region at the very end of the C-terminal is believed to be the docking site for co-chaperones.[7]
Function
The heat shock protein 70 (Hsp70) family contains both heat-inducible and constitutively expressed members. The latter are called heat-shock cognate (Hsc) proteins. The heat shock 70 kDa protein 8 also known as Hsc70 belongs to the heat-shock cognate subgroup. This protein binds to nascent polypeptides to facilitate correct protein folding.[1] In order to properly fold non-native proteins, Hsp70 chaperones interact with the hydrophobic peptide segments of proteins in an ATP-controlled fashion. Though the exact mechanism still remains unclear, there are at least two alternative modes of action: kinetic partitioning and local unfolding. In kinetic partitioning, Hsp70s repetitively bind and release substrates in cycles that maintain low concentrations of free substrate. This effectively prevents aggregation while allowing free molecules to fold to the native state. In local unfolding, the binding and release cycles induce localized unfolding in the substrate, which helps to overcome kinetic barriers for folding to the native state. Ultimately, its role in protein folding contributes to its function in signal transduction, apoptosis, protein homeostasis, and cell growth and differentiation.[2][3] Hsc70 is known to localize to the cytoplasm and lysosome, where it participates in chaperone-mediated autophagy by aiding the unfolding and translocation of substrate proteins across the membrane into the lysosomal lumen.[8][9] Through this pathway, Hsc70 also contributes to the degradation of the proapoptotic BBC3/PUMA under normal conditions, thus conferring cytoprotection.[9]
Hsc70 additionally serves as a positive regulator of cell cycle transition and carcinogenesis. For example, Hsc70 regulates the nuclear accumulation of cyclin D1, which is a key player in G1 to S phase cell cycle transition.[10][11]
Another function of Hsc70 is as an ATPase in the disassembly of clathrin-coated vesicles during transport of membrane components through the cell.[1][12] It works with auxilin to remove clathrin coated vesicles. In neurons, synaptojanin is also an important protein involved in vesicle uncoating.[1] Hsc70 is a key component of chaperone-mediated autophagy wherein it imparts selectivity to the proteins being degraded by this lysosomal pathway.[1][12]
Hsc70 vs Hsp70 comparison
Human Hsc70 has 85% identity with human Hsp70 (SDSC workbench, blosom26 default analysis). The scientific community has long assumed that Hsp70 and Hsc70 have similar cellular roles, but this assumption proved incomplete. While Hsc70 also performed chaperone functions under normal conditions, unlike canonical heat shock proteins, Hsc70 is constitutively expressed and performs functions related to normal cellular processes, such as protein ubiquitylation and degradation.[12][13]
Clinical significance
The Hsp70 member proteins are important apoptotic constituents. During a normal embryologic processes, or during cell injury (such as ischemia-reperfusion injury during heart attacks and strokes) or during developments and processes in cancer, an apoptotic cell undergoes structural changes including cell shrinkage, plasma membrane blebbing, nuclear condensation, and fragmentation of the DNA and nucleus. This is followed by fragmentation into apoptotic bodies that are quickly removed by phagocytes, thereby preventing an inflammatory response.[14] It is a mode of cell death defined by characteristic morphological, biochemical and molecular changes. It was first described as a "shrinkage necrosis", and then this term was replaced by apoptosis to emphasize its role opposite mitosis in tissue kinetics. In later stages of apoptosis the entire cell becomes fragmented, forming a number of plasma membrane-bounded apoptotic bodies which contain nuclear and or cytoplasmic elements. The ultrastructural appearance of necrosis is quite different, the main features being mitochondrial swelling, plasma membrane breakdown and cellular disintegration. Apoptosis occurs in many physiological and pathological processes. It plays an important role during embryonal development as programmed cell death and accompanies a variety of normal involutional processes in which it serves as a mechanism to remove "unwanted" cells.
Hsp70 member proteins, including Hsp72, inhibit apoptosis by acting on the caspase-dependent pathway and against apoptosis-inducing agents such as tumor necrosis factor-α (TNFα), staurosporine, and doxorubicin. This role leads to its involvement in many pathological processes, such as oncogenesis, neurodegeneration, and senescence. In particular, overexpression of HSP72 has been linked to the development some cancers, such as hepatocellular carcinoma, gastric cancers, colon cancers, breast cancers, and lung cancers, which led to its use as a prognosticmarker for these cancers.[3] Elevated Hsp70 levels in tumor cells may increase malignancy and resistance to therapy by complexing, and hence, stabilizing, oncofetal proteins and products and transporting them into intracellular sites, thereby promoting tumor cell proliferation.[15][3] As a result, tumor vaccine strategies for Hsp70s have been highly successful in animal models and progressed to clinical trials.[3] One treatment, a Hsp72/AFP recombined vaccine, elicited robust protective immunity against AFP-expressing tumors in mice experiments. Therefore, the vaccine holds promise for treating hepatocellular carcinoma.[3] Alternatively, overexpression of Hsp70 can mitigate damage from ischemia-reperfusion in cardiac muscle, as well damage from neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and spinocerebellar ataxias, and aging and cell senescence, as observed in centenarians subjected to heat shock challenge.[15][16] In particular, Hsc70 plays a protective role in the aforementioned diseases, as well as in other neuropsychiatric disorders such as schizophrenia.[17] Its protective role was further highlighted in a study that identified HSPA8 alongside other HSP70 proteins in a core sub-network of the wider chaperome interactome that functions as a proteostasis safeguard and that is repressed in aging brains and in the brains of Alzheimer's, Parkinson's and Huntington's disease patients.[18]
Interactions
Hsc70 forms a chaperone complex by interacting with the heat shock protein of 40 kDa (Hsp40), the heat shock protein of 90 kDa (Hsp90), the hsc70-interacting protein (HIP), the hsc70-hsp90 organizing protein (HOP), and the Bcl2-associated athanogene 1 protein (BAG1).[8]
↑ 3.03.13.23.33.43.53.6Wang X, Wang Q, Lin H, Li S, Sun L, Yang Y (Feb 2013). "HSP72 and gp96 in gastroenterological cancers". Clinica Chimica Acta; International Journal of Clinical Chemistry. 417: 73–9. doi:10.1016/j.cca.2012.12.017. PMID23266770.
↑Xilouri M, Stefanis L (Dec 2016). "Chaperone Mediated Autophagy: Starve to Prosper". Ageing Research Reviews. 32: 13–21. doi:10.1016/j.arr.2016.07.001. PMID27484893.
↑Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jäättelä M, Penninger JM, Garrido C, Kroemer G (September 2001). "Heat-shock protein 70 antagonizes apoptosis-inducing factor". Nat. Cell Biol. 3 (9): 839–43. doi:10.1038/ncb0901-839. PMID11533664.
↑Bozidis P, Hyphantis T, Mantas C, Sotiropoulou M, Antypa N, Andreoulakis E, Serretti A, Mavreas V, Antoniou K (Apr 2014). "HSP70 polymorphisms in first psychotic episode drug-naïve schizophrenic patients". Life Sciences. 100 (2): 133–7. doi:10.1016/j.lfs.2014.02.006. PMID24548631.
↑Yahata T, de Caestecker MP, Lechleider RJ, Andriole S, Roberts AB, Isselbacher KJ, Shioda T (Mar 2000). "The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors". The Journal of Biological Chemistry. 275 (12): 8825–34. doi:10.1074/jbc.275.12.8825. PMID10722728.
↑Sarkar S, Pollack BP, Lin KT, Kotenko SV, Cook JR, Lewis A, Pestka S (Dec 2001). "hTid-1, a human DnaJ protein, modulates the interferon signaling pathway". The Journal of Biological Chemistry. 276 (52): 49034–42. doi:10.1074/jbc.M103683200. PMID11679576.
↑Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID16189514.
↑Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (Sep 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. PMID16169070.
↑Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R (Jul 2002). "CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity". Molecular Cell. 10 (1): 55–67. doi:10.1016/S1097-2765(02)00583-X. PMID12150907.
Kiang JG (Dec 2004). "Inducible heat shock protein 70 kD and inducible nitric oxide synthase in hemorrhage/resuscitation-induced injury". Cell Research. 14 (6): 450–9. doi:10.1038/sj.cr.7290247. PMID15625011.
Rasmussen HH, van Damme J, Puype M, Gesser B, Celis JE, Vandekerckhove J (Dec 1992). "Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes". Electrophoresis. 13 (12): 960–9. doi:10.1002/elps.11501301199. PMID1286667.
Hattori H, Liu YC, Tohnai I, Ueda M, Kaneda T, Kobayashi T, Tanabe K, Ohtsuka K (Feb 1992). "Intracellular localization and partial amino acid sequence of a stress-inducible 40-kDa protein in HeLa cells". Cell Structure and Function. 17 (1): 77–86. doi:10.1247/csf.17.77. PMID1586970.
DeLuca-Flaherty C, McKay DB, Parham P, Hill BL (Sep 1990). "Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis". Cell. 62 (5): 875–87. doi:10.1016/0092-8674(90)90263-E. PMID1975516.
Lim MY, Davis N, Zhang JY, Bose HR (Mar 1990). "The v-rel oncogene product is complexed with cellular proteins including its proto-oncogene product and heat shock protein 70". Virology. 175 (1): 149–60. doi:10.1016/0042-6822(90)90195-W. PMID2155506.
Rensing SA, Maier UG (Jul 1994). "Phylogenetic analysis of the stress-70 protein family". Journal of Molecular Evolution. 39 (1): 80–6. doi:10.1007/BF00178252. PMID7545947.
Lain B, Iriarte A, Mattingly JR, Moreno JI, Martinez-Carrion M (Oct 1995). "Structural features of the precursor to mitochondrial aspartate aminotransferase responsible for binding to hsp70". The Journal of Biological Chemistry. 270 (42): 24732–9. doi:10.1074/jbc.270.42.24732. PMID7559589.
Benaroudj N, Batelier G, Triniolles F, Ladjimi MM (Nov 1995). "Self-association of the molecular chaperone HSC70". Biochemistry. 34 (46): 15282–90. doi:10.1021/bi00046a037. PMID7578144.
Nunes SL, Calderwood SK (Aug 1995). "Heat shock factor-1 and the heat shock cognate 70 protein associate in high molecular weight complexes in the cytoplasm of NIH-3T3 cells". Biochemical and Biophysical Research Communications. 213 (1): 1–6. doi:10.1006/bbrc.1995.2090. PMID7639722.
Inoue A, Torigoe T, Sogahata K, Kamiguchi K, Takahashi S, Sawada Y, Saijo M, Taya Y, Ishii S, Sato N, Kikuchi K (Sep 1995). "70-kDa heat shock cognate protein interacts directly with the N-terminal region of the retinoblastoma gene product pRb. Identification of a novel region of pRb-mediating protein interaction". The Journal of Biological Chemistry. 270 (38): 22571–6. doi:10.1074/jbc.270.38.22571. PMID7673249.
Abe T, Konishi T, Hirano T, Kasai H, Shimizu K, Kashimura M, Higashi K (Jan 1995). "Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus". Biochemical and Biophysical Research Communications. 206 (2): 548–55. doi:10.1006/bbrc.1995.1078. PMID7826371.
Furlini G, Vignoli M, Re MC, Gibellini D, Ramazzotti E, Zauli G, La Placa M (Jan 1994). "Human immunodeficiency virus type 1 interaction with the membrane of CD4+ cells induces the synthesis and nuclear translocation of 70K heat shock protein". The Journal of General Virology. 75 (1): 193–9. doi:10.1099/0022-1317-75-1-193. PMID7906708.
Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Tavaria M, Gabriele T, Anderson RL, Mirault ME, Baker E, Sutherland G, Kola I (Sep 1995). "Localization of the gene encoding the human heat shock cognate protein, HSP73, to chromosome 11". Genomics. 29 (1): 266–8. doi:10.1006/geno.1995.1242. PMID8530083.
Gao B, Eisenberg E, Greene L (Jul 1996). "Effect of constitutive 70-kDa heat shock protein polymerization on its interaction with protein substrate". The Journal of Biological Chemistry. 271 (28): 16792–7. doi:10.1074/jbc.271.28.16792. PMID8663341.
Egerton M, Moritz RL, Druker B, Kelso A, Simpson RJ (Jul 1996). "Identification of the 70kD heat shock cognate protein (Hsc70) and alpha-actinin-1 as novel phosphotyrosine-containing proteins in T lymphocytes". Biochemical and Biophysical Research Communications. 224 (3): 666–74. doi:10.1006/bbrc.1996.1082. PMID8713105.
Lamian V, Small GM, Feldherr CM (Oct 1996). "Evidence for the existence of a novel mechanism for the nuclear import of Hsc70". Experimental Cell Research. 228 (1): 84–91. doi:10.1006/excr.1996.0302. PMID8892974.
Hansen S, Midgley CA, Lane DP, Freeman BC, Morimoto RI, Hupp TR (Nov 1996). "Modification of two distinct COOH-terminal domains is required for murine p53 activation by bacterial Hsp70". The Journal of Biological Chemistry. 271 (48): 30922–8. doi:10.1074/jbc.271.48.30922. PMID8940078.
1nga: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngb: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngc: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngd: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1nge: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngf: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngg: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngh: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngi: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT
1ngj: STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT