SLC14A2: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Urea transporter, kidney'''  also known as '''urea transporter 2''' (UT2) or '''solute carrier family 14 member 2''' (SLC14A2) is a [[protein]] that in humans is encoded by the ''SLC14A2'' [[gene]].<ref name="pmid8647271">{{cite journal | vauthors = Olives B, Martial S, Mattei MG, Matassi G, Rousselet G, Ripoche P, Cartron JP, Bailly P | title = Molecular characterization of a new urea transporter in the human kidney | journal = FEBS Lett | volume = 386 | issue = 2-3 | pages = 156–60 |date=Jul 1996 | pmid = 8647271 | pmc =  | doi =10.1016/0014-5793(96)00425-5  }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SLC14A2 solute carrier family 14 (urea transporter), member 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8170| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Solute carrier family 14 (urea transporter), member 2
| HGNCid = 10919
| Symbol = SLC14A2
| AltSymbols =; UTR; FLJ16167; HUT2; MGC119566; MGC119567; UT-A2; UT2; hUT-A6
| OMIM = 601611
| ECnumber = 
| Homologene = 5183
| MGIid = 1351653
| GeneAtlas_image1 = PBB_GE_SLC14A2_208409_at_tn.png
| GeneAtlas_image2 = PBB_GE_SLC14A2_gnf1h08037_at_tn.png
| Function = {{GNF_GO|id=GO:0015204 |text = urea transporter activity}}
| Component = {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0006810 |text = transport}} {{GNF_GO|id=GO:0015840 |text = urea transport}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 8170
    | Hs_Ensembl = ENSG00000132874
    | Hs_RefseqProtein = NP_009094
    | Hs_RefseqmRNA = NM_007163
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 18
    | Hs_GenLoc_start = 41458628
    | Hs_GenLoc_end = 41516482
    | Hs_Uniprot = Q15849
    | Mm_EntrezGene = 27411
    | Mm_Ensembl = ENSMUSG00000024552
    | Mm_RefseqmRNA = NM_030683
    | Mm_RefseqProtein = NP_109608
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 18
    | Mm_GenLoc_start = 78308224
    | Mm_GenLoc_end = 78488490
    | Mm_Uniprot = 
  }}
}}
'''Solute carrier family 14 (urea transporter), member 2''', also known as '''SLC14A2''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SLC14A2 solute carrier family 14 (urea transporter), member 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8170| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
In [[mammal]]ian cells, [[urea]] is the chief end-product of [[nitrogen]] [[catabolism]] and plays an important role in the [[Countercurrent multiplication|urinary concentration]] mechanism. Thus, the [[plasma membrane]] of [[erythrocyte]]s and some [[Kidney tubule#Renal tubule|renal]] [[Epithelium|epithelial]] cells exhibit an elevated urea [[Membrane transport|permeability]] that is mediated by highly selective [[urea transporter]]s. In mammals, two urea transporters have been identified: the renal tubular urea transporter, UT2 ([[Urea transporter|UT-A]], and the erythrocyte urea transporter, UT11 (also called [[Urea transporter#Urea Transporter B|UT-B]], coded for by the [[SLC14A1]] gene).<ref name="entrez"/> SLC14A2 and [[SLC14A1]] constitute [[solute carrier family]] 14.
{{PBB_Summary
| section_title =
| summary_text = In mammalian cells, urea is the chief end-product of nitrogen catabolism and plays an important role in the urinary concentration mechanism. Thus, the plasma membrane of erythrocytes and some renal epithelial cells exhibit an elevated urea permeability that is mediated by highly selective urea transporters. In mammals, 2 urea transporters have been identified: the renal tubular urea transporter, UT2, and the erythrocyte urea transporter, UT11 (SLC14A1; MIM 111000).[supplied by OMIM]<ref name="entrez">{{cite web | title = Entrez Gene: SLC14A2 solute carrier family 14 (urea transporter), member 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8170| accessdate = }}</ref>
}}
 
==See also==
* [[Solute carrier family]]


==References==
==References==
{{reflist|2}}
{{reflist}}


==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
*{{cite journal  | vauthors=Smith CP, Fenton RA |title=Genomic organization of the mammalian SLC14a2 urea transporter genes. |journal=J. Membr. Biol. |volume=212 |issue= 2 |pages= 109–17 |year= 2007 |pmid= 17264986 |doi= 10.1007/s00232-006-0870-z }}
| citations =
*{{cite journal   |vauthors=Olives B, Neau P, Bailly P, etal |title=Cloning and functional expression of a urea transporter from human bone marrow cells. |journal=J. Biol. Chem. |volume=269 |issue= 50 |pages= 31649–52 |year= 1995 |pmid= 7989337 |doi=  }}
*{{cite journal  | author=Smith CP, Fenton RA |title=Genomic organization of the mammalian SLC14a2 urea transporter genes. |journal=J. Membr. Biol. |volume=212 |issue= 2 |pages= 109-17 |year= 2007 |pmid= 17264986 |doi= 10.1007/s00232-006-0870-z }}
*{{cite journal   |vauthors=Bradford AD, Terris JM, Ecelbarger CA, etal |title=97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation. |journal=Am. J. Physiol. Renal Physiol. |volume=281 |issue= 1 |pages= F133–43 |year= 2001 |pmid= 11399654 |doi=  }}
*{{cite journal | author=Olives B, Neau P, Bailly P, ''et al.'' |title=Cloning and functional expression of a urea transporter from human bone marrow cells. |journal=J. Biol. Chem. |volume=269 |issue= 50 |pages= 31649-52 |year= 1995 |pmid= 7989337 |doi=  }}
*{{cite journal   |vauthors=Bagnasco SM, Peng T, Janech MG, etal |title=Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene. |journal=Am. J. Physiol. Renal Physiol. |volume=281 |issue= 3 |pages= F400–6 |year= 2001 |pmid= 11502588 |doi=  }}
*{{cite journal | author=Olivès B, Martial S, Mattei MG, ''et al.'' |title=Molecular characterization of a new urea transporter in the human kidney. |journal=FEBS Lett. |volume=386 |issue= 2-3 |pages= 156-60 |year= 1996 |pmid= 8647271 |doi=  }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal  | author=Bradford AD, Terris JM, Ecelbarger CA, ''et al.'' |title=97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation. |journal=Am. J. Physiol. Renal Physiol. |volume=281 |issue= 1 |pages= F133-43 |year= 2001 |pmid= 11399654 |doi=  }}
*{{cite journal   |vauthors=Jung JY, Madsen KM, Han KH, etal |title=Expression of urea transporters in potassium-depleted mouse kidney. |journal=Am. J. Physiol. Renal Physiol. |volume=285 |issue= 6 |pages= F1210–24 |year= 2003 |pmid= 12952854 |doi= 10.1152/ajprenal.00111.2003 }}
*{{cite journal | author=Bagnasco SM, Peng T, Janech MG, ''et al.'' |title=Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene. |journal=Am. J. Physiol. Renal Physiol. |volume=281 |issue= 3 |pages= F400-6 |year= 2001 |pmid= 11502588 |doi=  }}
*{{cite journal  | vauthors=Smith CP, Potter EA, Fenton RA, Stewart GS |title=Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. |journal=Am. J. Physiol., Cell Physiol. |volume=287 |issue= 4 |pages= C1087–93 |year= 2004 |pmid= 15189812 |doi= 10.1152/ajpcell.00363.2003 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Damiano AE, Zotta E, Ibarra C |title=Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. |journal=Placenta |volume=27 |issue= 11-12 |pages= 1073–81 |year= 2006 |pmid= 16480766 |doi= 10.1016/j.placenta.2005.11.014 }}
*{{cite journal | author=Jung JY, Madsen KM, Han KH, ''et al.'' |title=Expression of urea transporters in potassium-depleted mouse kidney. |journal=Am. J. Physiol. Renal Physiol. |volume=285 |issue= 6 |pages= F1210-24 |year= 2003 |pmid= 12952854 |doi= 10.1152/ajprenal.00111.2003 }}
*{{cite journal   |vauthors=Hong X, Xing H, Yu Y, etal |title=Genetic polymorphisms of the urea transporter gene are associated with antihypertensive response to nifedipine GITS. |journal=Methods and findings in experimental and clinical pharmacology |volume=29 |issue= 1 |pages= 3–10 |year= 2007 |pmid= 17344938 |doi= 10.1358/mf.2007.29.1.1063490 }}
*{{cite journal  | author=Smith CP, Potter EA, Fenton RA, Stewart GS |title=Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. |journal=Am. J. Physiol., Cell Physiol. |volume=287 |issue= 4 |pages= C1087-93 |year= 2004 |pmid= 15189812 |doi= 10.1152/ajpcell.00363.2003 }}
*{{cite journal  | author=Damiano AE, Zotta E, Ibarra C |title=Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. |journal=Placenta |volume=27 |issue= 11-12 |pages= 1073-81 |year= 2006 |pmid= 16480766 |doi= 10.1016/j.placenta.2005.11.014 }}
*{{cite journal | author=Hong X, Xing H, Yu Y, ''et al.'' |title=Genetic polymorphisms of the urea transporter gene are associated with antihypertensive response to nifedipine GITS. |journal=Methods and findings in experimental and clinical pharmacology |volume=29 |issue= 1 |pages= 3-10 |year= 2007 |pmid= 17344938 |doi= 10.1358/mf.2007.29.1.1063490 }}
}}
{{refend}}
{{refend}}


{{membrane-protein-stub}}
{{NLM content}}
{{NLM content}}
{{Membrane transport proteins}}
{{Membrane transport proteins}}
[[Category:Solute carrier family]]
[[Category:Solute carrier family]]
{{WikiDoc Sources}}
 
 
{{membrane-protein-stub}}

Latest revision as of 06:26, 11 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Urea transporter, kidney also known as urea transporter 2 (UT2) or solute carrier family 14 member 2 (SLC14A2) is a protein that in humans is encoded by the SLC14A2 gene.[1][2]

Function

In mammalian cells, urea is the chief end-product of nitrogen catabolism and plays an important role in the urinary concentration mechanism. Thus, the plasma membrane of erythrocytes and some renal epithelial cells exhibit an elevated urea permeability that is mediated by highly selective urea transporters. In mammals, two urea transporters have been identified: the renal tubular urea transporter, UT2 (UT-A, and the erythrocyte urea transporter, UT11 (also called UT-B, coded for by the SLC14A1 gene).[2] SLC14A2 and SLC14A1 constitute solute carrier family 14.

References

  1. Olives B, Martial S, Mattei MG, Matassi G, Rousselet G, Ripoche P, Cartron JP, Bailly P (Jul 1996). "Molecular characterization of a new urea transporter in the human kidney". FEBS Lett. 386 (2–3): 156–60. doi:10.1016/0014-5793(96)00425-5. PMID 8647271.
  2. 2.0 2.1 "Entrez Gene: SLC14A2 solute carrier family 14 (urea transporter), member 2".

Further reading

  • Smith CP, Fenton RA (2007). "Genomic organization of the mammalian SLC14a2 urea transporter genes". J. Membr. Biol. 212 (2): 109–17. doi:10.1007/s00232-006-0870-z. PMID 17264986.
  • Olives B, Neau P, Bailly P, et al. (1995). "Cloning and functional expression of a urea transporter from human bone marrow cells". J. Biol. Chem. 269 (50): 31649–52. PMID 7989337.
  • Bradford AD, Terris JM, Ecelbarger CA, et al. (2001). "97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation". Am. J. Physiol. Renal Physiol. 281 (1): F133–43. PMID 11399654.
  • Bagnasco SM, Peng T, Janech MG, et al. (2001). "Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene". Am. J. Physiol. Renal Physiol. 281 (3): F400–6. PMID 11502588.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Jung JY, Madsen KM, Han KH, et al. (2003). "Expression of urea transporters in potassium-depleted mouse kidney". Am. J. Physiol. Renal Physiol. 285 (6): F1210–24. doi:10.1152/ajprenal.00111.2003. PMID 12952854.
  • Smith CP, Potter EA, Fenton RA, Stewart GS (2004). "Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6". Am. J. Physiol., Cell Physiol. 287 (4): C1087–93. doi:10.1152/ajpcell.00363.2003. PMID 15189812.
  • Damiano AE, Zotta E, Ibarra C (2006). "Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas". Placenta. 27 (11–12): 1073–81. doi:10.1016/j.placenta.2005.11.014. PMID 16480766.
  • Hong X, Xing H, Yu Y, et al. (2007). "Genetic polymorphisms of the urea transporter gene are associated with antihypertensive response to nifedipine GITS". Methods and findings in experimental and clinical pharmacology. 29 (1): 3–10. doi:10.1358/mf.2007.29.1.1063490. PMID 17344938.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.