SLC20A1: Difference between revisions
Jump to navigation
Jump to search
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Sodium-dependent phosphate transporter 1''' is a [[protein]] that in humans is encoded by the ''SLC20A1'' [[gene]].<ref name="pmid8041748">{{cite journal | vauthors = Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD | title = Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters | journal = Proc Natl Acad Sci U S A | volume = 91 | issue = 15 | pages = 7071–5 |date=Aug 1994 | pmid = 8041748 | pmc = 44340 | doi =10.1073/pnas.91.15.7071 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SLC20A1 solute carrier family 20 (phosphate transporter), member 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6574| accessdate = }}</ref> | ||
}} | |||
{{ | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Retrovirus receptors allow infection of human and murine cells by various retroviruses. The receptors that have been identified at the molecular level include CD4 (MIM 186940) for human immunodeficiency virus, Rec1 for murine ecotropic virus, and GLVR1 for gibbon ape leukemia virus (see MIM 182090). These 3 proteins show no homology to one another at the DNA or protein level. GLVR1 is a sodium-dependent phosphate symporter.[supplied by OMIM]<ref name="entrez" | | summary_text = Retrovirus receptors allow infection of human and murine cells by various retroviruses. The receptors that have been identified at the molecular level include CD4 (MIM 186940) for human immunodeficiency virus, Rec1 for murine ecotropic virus, and GLVR1 for gibbon ape leukemia virus (see MIM 182090). These 3 proteins show no homology to one another at the DNA or protein level. GLVR1 is a sodium-dependent phosphate symporter.[supplied by OMIM]<ref name="entrez" /> | ||
}} | }} | ||
Line 58: | Line 12: | ||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
Line 64: | Line 18: | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | *{{cite journal |vauthors=Takeuchi Y, Vile RG, Simpson G, etal |title=Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. |journal=J. Virol. |volume=66 |issue= 2 |pages= 1219–22 |year= 1992 |pmid= 1309898 |doi= | pmc=240831 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Johann SV, Gibbons JJ, O'Hara B |title=GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. |journal=J. Virol. |volume=66 |issue= 3 |pages= 1635–40 |year= 1992 |pmid= 1531369 |doi= | pmc=240899 }} | ||
*{{cite journal | *{{cite journal |vauthors=Kaelbling M, Eddy R, Shows TB, etal |title=Localization of the human gene allowing infection by gibbon ape leukemia virus to human chromosome region 2q11-q14 and to the homologous region on mouse chromosome 2. |journal=J. Virol. |volume=65 |issue= 4 |pages= 1743–7 |year= 1991 |pmid= 1672162 |doi= | pmc=239979 }} | ||
*{{cite journal | *{{cite journal |vauthors=O'Hara B, Johann SV, Klinger HP, etal |title=Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. |journal=Cell Growth Differ. |volume=1 |issue= 3 |pages= 119–27 |year= 1991 |pmid= 2078500 |doi= }} | ||
*{{cite journal | *{{cite journal |vauthors=Olah Z, Lehel C, Anderson WB, etal |title=The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. |journal=J. Biol. Chem. |volume=269 |issue= 41 |pages= 25426–31 |year= 1994 |pmid= 7929240 |doi= }} | ||
*{{cite journal | | *{{cite journal | vauthors=Miller DG, Miller AD |title=A family of retroviruses that utilize related phosphate transporters for cell entry. |journal=J. Virol. |volume=68 |issue= 12 |pages= 8270–6 |year= 1994 |pmid= 7966619 |doi= | pmc=237294 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Johann SV, van Zeijl M, Cekleniak J, O'Hara B |title=Definition of a domain of GLVR1 which is necessary for infection by gibbon ape leukemia virus and which is highly polymorphic between species. |journal=J. Virol. |volume=67 |issue= 11 |pages= 6733–6 |year= 1993 |pmid= 8411375 |doi= | pmc=238113 }} | ||
*{{cite journal | *{{cite journal |vauthors=Tatsumi S, Segawa H, Morita K, etal |title=Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. |journal=Endocrinology |volume=139 |issue= 4 |pages= 1692–9 |year= 1998 |pmid= 9528951 |doi=10.1210/en.139.4.1692 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Palmer G, Manen D, Bonjour JP, Caverzasio J |title=Characterization of the human Glvr-1 phosphate transporter/retrovirus receptor gene and promoter region. |journal=Gene |volume=226 |issue= 1 |pages= 25–33 |year= 1999 |pmid= 9889306 |doi=10.1016/S0378-1119(98)00572-1 }} | ||
*{{cite journal | *{{cite journal |vauthors=Jono S, McKee MD, Murry CE, etal |title=Phosphate regulation of vascular smooth muscle cell calcification. |journal=Circ. Res. |volume=87 |issue= 7 |pages= E10–7 |year= 2000 |pmid= 11009570 |doi= 10.1161/01.RES.87.7.e10 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Farrell KB, Russ JL, Murthy RK, Eiden MV |title=Reassessing the role of region A in Pit1-mediated viral entry. |journal=J. Virol. |volume=76 |issue= 15 |pages= 7683–93 |year= 2002 |pmid= 12097582 |doi=10.1128/JVI.76.15.7683-7693.2002 | pmc=136385 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Bottger P, Pedersen L |title=Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function. |journal=J. Biol. Chem. |volume=277 |issue= 45 |pages= 42741–7 |year= 2003 |pmid= 12205090 |doi= 10.1074/jbc.M207096200 }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | *{{cite journal |vauthors=Matsuda A, Suzuki Y, Honda G, etal |title=Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. |journal=Oncogene |volume=22 |issue= 21 |pages= 3307–18 |year= 2003 |pmid= 12761501 |doi= 10.1038/sj.onc.1206406 }} | ||
*{{cite journal | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }} | ||
*{{cite journal | vauthors=Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R |title=Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. |journal=Arthritis Rheum. |volume=52 |issue= 1 |pages= 144–54 |year= 2005 |pmid= 15641067 |doi= 10.1002/art.20748 }} | |||
*{{cite journal | | *{{cite journal |vauthors=Hillier LW, Graves TA, Fulton RS, etal |title=Generation and annotation of the DNA sequences of human chromosomes 2 and 4. |journal=Nature |volume=434 |issue= 7034 |pages= 724–31 |year= 2005 |pmid= 15815621 |doi= 10.1038/nature03466 }} | ||
*{{cite journal | *{{cite journal | vauthors=Li X, Yang HY, Giachelli CM |title=Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. |journal=Circ. Res. |volume=98 |issue= 7 |pages= 905–12 |year= 2006 |pmid= 16527991 |doi= 10.1161/01.RES.0000216409.20863.e7 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Bøttger P, Hede SE, Grunnet M, etal |title=Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2. |journal=Am. J. Physiol., Cell Physiol. |volume=291 |issue= 6 |pages= C1377–87 |year= 2007 |pmid= 16790504 |doi= 10.1152/ajpcell.00015.2006 }} | ||
*{{cite journal | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{NLM content}} | {{NLM content}} | ||
{{Membrane transport proteins}} | {{Membrane transport proteins}} | ||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
[[Category:Solute carrier family]] | [[Category:Solute carrier family]] | ||
{{ | |||
{{membrane-protein-stub}} |
Latest revision as of 06:27, 11 September 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Sodium-dependent phosphate transporter 1 is a protein that in humans is encoded by the SLC20A1 gene.[1][2]
Retrovirus receptors allow infection of human and murine cells by various retroviruses. The receptors that have been identified at the molecular level include CD4 (MIM 186940) for human immunodeficiency virus, Rec1 for murine ecotropic virus, and GLVR1 for gibbon ape leukemia virus (see MIM 182090). These 3 proteins show no homology to one another at the DNA or protein level. GLVR1 is a sodium-dependent phosphate symporter.[supplied by OMIM][2]
See also
References
- ↑ Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (Aug 1994). "Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters". Proc Natl Acad Sci U S A. 91 (15): 7071–5. doi:10.1073/pnas.91.15.7071. PMC 44340. PMID 8041748.
- ↑ 2.0 2.1 "Entrez Gene: SLC20A1 solute carrier family 20 (phosphate transporter), member 1".
Further reading
- Takeuchi Y, Vile RG, Simpson G, et al. (1992). "Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus". J. Virol. 66 (2): 1219–22. PMC 240831. PMID 1309898.
- Johann SV, Gibbons JJ, O'Hara B (1992). "GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus". J. Virol. 66 (3): 1635–40. PMC 240899. PMID 1531369.
- Kaelbling M, Eddy R, Shows TB, et al. (1991). "Localization of the human gene allowing infection by gibbon ape leukemia virus to human chromosome region 2q11-q14 and to the homologous region on mouse chromosome 2". J. Virol. 65 (4): 1743–7. PMC 239979. PMID 1672162.
- O'Hara B, Johann SV, Klinger HP, et al. (1991). "Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus". Cell Growth Differ. 1 (3): 119–27. PMID 2078500.
- Olah Z, Lehel C, Anderson WB, et al. (1994). "The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter". J. Biol. Chem. 269 (41): 25426–31. PMID 7929240.
- Miller DG, Miller AD (1994). "A family of retroviruses that utilize related phosphate transporters for cell entry". J. Virol. 68 (12): 8270–6. PMC 237294. PMID 7966619.
- Johann SV, van Zeijl M, Cekleniak J, O'Hara B (1993). "Definition of a domain of GLVR1 which is necessary for infection by gibbon ape leukemia virus and which is highly polymorphic between species". J. Virol. 67 (11): 6733–6. PMC 238113. PMID 8411375.
- Tatsumi S, Segawa H, Morita K, et al. (1998). "Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands". Endocrinology. 139 (4): 1692–9. doi:10.1210/en.139.4.1692. PMID 9528951.
- Palmer G, Manen D, Bonjour JP, Caverzasio J (1999). "Characterization of the human Glvr-1 phosphate transporter/retrovirus receptor gene and promoter region". Gene. 226 (1): 25–33. doi:10.1016/S0378-1119(98)00572-1. PMID 9889306.
- Jono S, McKee MD, Murry CE, et al. (2000). "Phosphate regulation of vascular smooth muscle cell calcification". Circ. Res. 87 (7): E10–7. doi:10.1161/01.RES.87.7.e10. PMID 11009570.
- Farrell KB, Russ JL, Murthy RK, Eiden MV (2002). "Reassessing the role of region A in Pit1-mediated viral entry". J. Virol. 76 (15): 7683–93. doi:10.1128/JVI.76.15.7683-7693.2002. PMC 136385. PMID 12097582.
- Bottger P, Pedersen L (2003). "Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function". J. Biol. Chem. 277 (45): 42741–7. doi:10.1074/jbc.M207096200. PMID 12205090.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Matsuda A, Suzuki Y, Honda G, et al. (2003). "Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways". Oncogene. 22 (21): 3307–18. doi:10.1038/sj.onc.1206406. PMID 12761501.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R (2005). "Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes". Arthritis Rheum. 52 (1): 144–54. doi:10.1002/art.20748. PMID 15641067.
- Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4". Nature. 434 (7034): 724–31. doi:10.1038/nature03466. PMID 15815621.
- Li X, Yang HY, Giachelli CM (2006). "Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification". Circ. Res. 98 (7): 905–12. doi:10.1161/01.RES.0000216409.20863.e7. PMID 16527991.
- Bøttger P, Hede SE, Grunnet M, et al. (2007). "Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2". Am. J. Physiol., Cell Physiol. 291 (6): C1377–87. doi:10.1152/ajpcell.00015.2006. PMID 16790504.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
Stub icon | This membrane protein–related article is a stub. You can help Wikipedia by expanding it. |