Histone deacetylase 5: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Histone deacetylase 5''' is an [[enzyme]] that in humans is encoded by the ''HDAC5'' [[gene]].<ref name="pmid10220385">{{cite journal |vauthors=Grozinger CM, Hassig CA, Schreiber SL | title = Three proteins define a class of human histone deacetylases related to yeast Hda1p | journal = Proc Natl Acad Sci U S A | volume = 96 | issue = 9 | pages = 4868–73 |date=June 1999 | pmid = 10220385 | pmc = 21783 | doi =10.1073/pnas.96.9.4868  }}</ref><ref name="pmid9610721">{{cite journal |vauthors=Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ | title = Characterization of human colon cancer antigens recognized by autologous antibodies | journal = Int J Cancer | volume = 76 | issue = 5 | pages = 652–8 |date=June 1998 | pmid = 9610721 | pmc =  | doi =10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P  }}</ref><ref name="entrez">{{Cite web| title = Entrez Gene: HDAC5 histone deacetylase 5| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10014| accessdate = }}</ref>
| update_page = yes
 
| require_manual_inspection = no
== Function ==
| update_protein_box = yes
 
| update_summary = yes
[[Histone]]s play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters [[chromosome]] structure and affects [[transcription factor]] access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses [[histone deacetylase]] activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/>
| update_citations = yes
 
}}
[[AMP-activated protein kinase]] regulation of the glucose transporter [[GLUT4]] occurs by [[phosphorylation]] of HDAC5.<ref>{{cite journal |vauthors=McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M | title=AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5 | journal=[[Diabetes (journal)|Diabetes]] | volume=57 | issue=4 | year=2008 | pages=860–867 | doi= 10.2337/db07-0843 | url = http://diabetes.diabetesjournals.org/content/57/4/860.long | id= | pmid=18184930}}</ref>


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
HDAC5 is involved in [[memory consolidation]] and suggests that development of more selective [[HDAC inhibitors]] for the treatment of [[Alzheimer's disease]] should avoid targeting HDAC5.<ref name="pmid22914591">{{cite journal |vauthors=Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A | title = Loss of HDAC5 impairs memory function: implications for Alzheimer's disease | journal = J Alzheimers Dis | volume = 33 | issue = 1 | pages = 35–44 |date=January 2013 | pmid = 22914591 | doi = 10.3233/JAD-2012-121009 }}</ref> Its function can be effectively examined by siRNA knockdown based on an independent validation.<ref>{{Cite journal|last=Munkácsy|first=Gyöngyi|last2=Sztupinszki|first2=Zsófia|last3=Herman|first3=Péter|last4=Bán|first4=Bence|last5=Pénzváltó|first5=Zsófia|last6=Szarvas|first6=Nóra|last7=Győrffy|first7=Balázs|date=2016-01-01|title=Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments|url=http://linkinghub.elsevier.com/retrieve/pii/S2162253117300859|journal=Molecular Therapy - Nucleic Acids|language=English|volume=5|doi=10.1038/mtna.2016.66|issn=2162-2531|pmc=5056990|pmid=27673562}}</ref>
{{GNF_Protein_box
| image =
| image_source = 
| PDB =
| Name = Histone deacetylase 5
| HGNCid = 14068
| Symbol = HDAC5
| AltSymbols =; FLJ90614; HD5; NY-CO-9
| OMIM = 605315
| ECnumber = 
| Homologene = 3995
| MGIid = 1333784
| GeneAtlas_image1 = PBB_GE_HDAC5_202455_at_tn.png
| Function = {{GNF_GO|id=GO:0003714 |text = transcription corepressor activity}} {{GNF_GO|id=GO:0004407 |text = histone deacetylase activity}} {{GNF_GO|id=GO:0008134 |text = transcription factor binding}} {{GNF_GO|id=GO:0016566 |text = specific transcriptional repressor activity}} {{GNF_GO|id=GO:0016787 |text = hydrolase activity}}
| Component = {{GNF_GO|id=GO:0000118 |text = histone deacetylase complex}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0016604 |text = nuclear body}}
| Process = {{GNF_GO|id=GO:0000074 |text = regulation of progression through cell cycle}} {{GNF_GO|id=GO:0000122 |text = negative regulation of transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0006338 |text = chromatin remodeling}} {{GNF_GO|id=GO:0006342 |text = chromatin silencing}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006954 |text = inflammatory response}} {{GNF_GO|id=GO:0007507 |text = heart development}} {{GNF_GO|id=GO:0030183 |text = B cell differentiation}} {{GNF_GO|id=GO:0045843 |text = negative regulation of striated muscle development}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 10014
    | Hs_Ensembl = ENSG00000108840
    | Hs_RefseqProtein = NP_001015053
    | Hs_RefseqmRNA = NM_001015053
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 17
    | Hs_GenLoc_start = 39509647
    | Hs_GenLoc_end = 39556540
    | Hs_Uniprot = Q9UQL6
    | Mm_EntrezGene = 15184
    | Mm_Ensembl = ENSMUSG00000008855
    | Mm_RefseqmRNA = NM_001077696
    | Mm_RefseqProtein = NP_001071164
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 11
    | Mm_GenLoc_start = 102011839
    | Mm_GenLoc_end = 102046214
    | Mm_Uniprot = Q3TSM2
  }}
}}
'''Histone deacetylase 5''', also known as '''HDAC5''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: HDAC5 histone deacetylase 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10014| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
==Interactions==
{{PBB_Summary
Histone deacetylase 5 has been shown to [[Protein-protein interaction|interact]] with:
| section_title =  
{{div col|colwidth=20em}}
| summary_text = Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses histone deacetylase activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.<ref name="entrez">{{cite web | title = Entrez Gene: HDAC5 histone deacetylase 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10014| accessdate = }}</ref>
* [[BCL6]],<ref name = pmid11929873/>  
}}
* [[CBX5 (gene)|CBX5]],<ref name = pmid12242305>{{cite journal |vauthors=Zhang CL, McKinsey TA, Olson EN | title = Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation | journal = Mol. Cell. Biol. | volume = 22 | issue = 20 | pages = 7302–12 | year = 2002 | pmid = 12242305 | pmc = 139799 | doi = 10.1128/MCB.22.20.7302-7312.2002}}</ref>
* [[GATA1]],<ref name = pmid14668799>{{cite journal |vauthors=Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H | title = Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation | journal = Oncogene | volume = 22 | issue = 57 | pages = 9176–84 | year = 2003 | pmid = 14668799 | doi = 10.1038/sj.onc.1206902 }}</ref>
* [[HDAC3]],<ref name = pmid10220385 /><ref name = pmid11931768/><ref name = pmid11804585>{{cite journal |vauthors=Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E | title = Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR | journal = Mol. Cell | volume = 9 | issue = 1 | pages = 45–57 | year = 2002 | pmid = 11804585 | doi = 10.1016/S1097-2765(01)00429-4}}</ref><ref name = pmid10869435>{{cite journal |vauthors=Grozinger CM, Schreiber SL | title = Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 97 | issue = 14 | pages = 7835–40 | year = 2000 | pmid = 10869435 | pmc = 16631 | doi = 10.1073/pnas.140199597 }}</ref>
* [[IKZF1]],<ref name = pmid12015313>{{cite journal |vauthors=Koipally J, Georgopoulos K | title = A molecular dissection of the repression circuitry of Ikaros | journal = J. Biol. Chem. | volume = 277 | issue = 31 | pages = 27697–705 | year = 2002 | pmid = 12015313 | doi = 10.1074/jbc.M201694200 }}</ref>
* [[Myocyte-specific enhancer factor 2A|MEF2A]],<ref name = pmid10748098>{{cite journal |vauthors=Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S | title = mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity | journal = J. Biol. Chem. | volume = 275 | issue = 20 | pages = 15594–9 | year = 2000 | pmid = 10748098 | doi = 10.1074/jbc.M908437199 }}</ref>
* [[NRIP1]],<ref name = pmid15060175>{{cite journal |vauthors=Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V | title = Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition | journal = Nucleic Acids Res. | volume = 32 | issue = 6 | pages = 1957–66 | year = 2004 | pmid = 15060175 | pmc = 390375 | doi = 10.1093/nar/gkh524 }}</ref>
* [[Nuclear receptor co-repressor 1|NCOR1]],<ref name = pmid11931768>{{cite journal |vauthors=Zhang J, Kalkum M, Chait BT, Roeder RG | title = The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2 | journal = Mol. Cell | volume = 9 | issue = 3 | pages = 611–23 | year = 2002 | pmid = 11931768 | doi = 10.1016/S1097-2765(02)00468-9}}</ref><ref name = pmid10640275>{{cite journal |vauthors=Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA | title = Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway | journal = Genes Dev. | volume = 14 | issue = 1 | pages = 45–54 | year = 2000 | pmid = 10640275 | pmc = 316335 | doi = }}</ref>
* [[Nuclear receptor co-repressor 2|NCOR2]],<ref name = pmid10640275/>
* [[YWHAQ]],<ref name = pmid15367659>{{cite journal |vauthors=Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA | title = Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5 | journal = Mol. Cell. Biol. | volume = 24 | issue = 19 | pages = 8374–85 | year = 2004 | pmid = 15367659 | pmc = 516754 | doi = 10.1128/MCB.24.19.8374-8385.2004 }}</ref> and
* [[Zinc finger and BTB domain-containing protein 16|ZBTB16]].<ref name = pmid11929873>{{cite journal |vauthors=Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S | title = Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor | journal = J. Biol. Chem. | volume = 277 | issue = 24 | pages = 22045–52 | year = 2002 | pmid = 11929873 | doi = 10.1074/jbc.M201736200 }}</ref><ref name = pmid15467736>{{cite journal |vauthors=Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A | title = HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF | journal = Oncogene | volume = 23 | issue = 54 | pages = 8777–84 | year = 2004 | pmid = 15467736 | doi = 10.1038/sj.onc.1208128 }}</ref>
{{Div col end}}


==See also==
==See also==
* [[Histone deacetylase]]
* [[Histone deacetylase]]
{{Clear}}


==References==
==References==
{{reflist|2}}
{{Reflist|35em}}


==Further reading==
==Further reading==
{{refbegin | 2}}
{{Refbegin|35em}}
{{PBB_Further_reading  
{{PBB_Further_reading
| citations =  
| citations =
*{{cite journal  | author=Nakajima D, Okazaki N, Yamakawa H, ''et al.'' |title=Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones. |journal=DNA Res. |volume=9 |issue= 3 |pages= 99-106 |year= 2003 |pmid= 12168954 |doi=  }}
*{{Cite journal  |vauthors=Verdin E, Dequiedt F, Kasler HG |title=Class II histone deacetylases: versatile regulators |journal=Trends Genet. |volume=19 |issue= 5 |pages= 286–93 |year= 2003 |pmid= 12711221 |doi=10.1016/S0168-9525(03)00073-8 }}
*{{cite journal  | author=Verdin E, Dequiedt F, Kasler HG |title=Class II histone deacetylases: versatile regulators. |journal=Trends Genet. |volume=19 |issue= 5 |pages= 286-93 |year= 2003 |pmid= 12711221 |doi=  }}
*{{Cite journal  | author=Huang EY |title=Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway |journal=Genes Dev. |volume=14 |issue= 1 |pages= 45–54 |year= 2000 |pmid= 10640275 |doi=  | pmc=316335 |name-list-format=vanc| author2=Zhang J  | author3=Miska EA  | display-authors=| last4=Guenther  | first4=MG  | last5=Kouzarides  | first5=| last6=Lazar  | first6=MA }}
*{{cite journal | author=Scanlan MJ, Chen YT, Williamson B, ''et al.'' |title=Characterization of human colon cancer antigens recognized by autologous antibodies. |journal=Int. J. Cancer |volume=76 |issue= 5 |pages= 652-8 |year= 1998 |pmid= 9610721 |doi=  }}
*{{Cite journal  | author=Lemercier C |title=mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity |journal=J. Biol. Chem. |volume=275 |issue= 20 |pages= 15594–9 |year= 2000 |pmid= 10748098 |doi= 10.1074/jbc.M908437199 |name-list-format=vanc| author2=Verdel A  | author3=Galloo B  | display-authors=| last4=Curtet  | first4=| last5=Brocard  | first5=MP  | last6=Khochbin | first6=S }}
*{{cite journal  | author=Nagase T, Ishikawa K, Miyajima N, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. |journal=DNA Res. |volume=5 |issue= 1 |pages= 31-9 |year= 1998 |pmid= 9628581 |doi= }}
*{{Cite journal  |vauthors=Grozinger CM, Schreiber SL |title=Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3- 3-dependent cellular localization |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 14 |pages= 7835–40 |year= 2000 |pmid= 10869435 |doi= 10.1073/pnas.140199597 | pmc=16631 }}
*{{cite journal | author=Grozinger CM, Hassig CA, Schreiber SL |title=Three proteins define a class of human histone deacetylases related to yeast Hda1p. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=96 |issue= 9 |pages= 4868-73 |year= 1999 |pmid= 10220385 |doi=  }}
*{{Cite journal  |vauthors=Huynh KD, Fischle W, Verdin E, Bardwell VJ |title=BCoR, a novel corepressor involved in BCL-6 repression |journal=Genes Dev. |volume=14 |issue= 14 |pages= 1810–23 |year= 2000 |pmid= 10898795 |doi= 10.1101/gad.14.14.1810| pmc=316791  }}
*{{cite journal  | author=Huang EY, Zhang J, Miska EA, ''et al.'' |title=Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. |journal=Genes Dev. |volume=14 |issue= 1 |pages= 45-54 |year= 2000 |pmid= 10640275 |doi=  }}
*{{Cite journal  | author=[[Mahlknecht U]] |title=Chromosomal organization and localization of the human histone deacetylase 5 gene (HDAC5) |journal=Biochim. Biophys. Acta |volume=1493 |issue= 3 |pages= 342–8 |year= 2000 |pmid= 11018260 |doi= 10.1016/S0167-4781(00)00191-3|name-list-format=vanc| author2=Schnittger S | author3=Ottmann OG  | display-authors=| last4=Schoch  | first4=| last5=Mosebach  | first5=| last6=Hiddemann  | first6=W  | last7=Hoelzer  | first7=D }}
*{{cite journal  | author=Lemercier C, Verdel A, Galloo B, ''et al.'' |title=mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. |journal=J. Biol. Chem. |volume=275 |issue= 20 |pages= 15594-9 |year= 2000 |pmid= 10748098 |doi= 10.1074/jbc.M908437199 }}
*{{Cite journal  |vauthors=Zhang CL, McKinsey TA, Lu JR, Olson EN |title=Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor |journal=J. Biol. Chem. |volume=276 |issue= 1 |pages= 35–9 |year= 2001 |pmid= 11022042 |doi= 10.1074/jbc.M007364200 }}
*{{cite journal  | author=Grozinger CM, Schreiber SL |title=Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 14 |pages= 7835-40 |year= 2000 |pmid= 10869435 |doi= 10.1073/pnas.140199597 }}
*{{Cite journal  |vauthors=McKinsey TA, Zhang CL, Lu J, Olson EN |title=Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation |journal=Nature |volume=408 |issue= 6808 |pages= 106–11 |year= 2000 |pmid= 11081517 |doi= 10.1038/35040593 }}
*{{cite journal | author=Huynh KD, Fischle W, Verdin E, Bardwell VJ |title=BCoR, a novel corepressor involved in BCL-6 repression. |journal=Genes Dev. |volume=14 |issue= 14 |pages= 1810-23 |year= 2000 |pmid= 10898795 |doi=  }}
*{{Cite journal  |vauthors=McKinsey TA, Zhang CL, Olson EN |title=Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 26 |pages= 14400–5 |year= 2001 |pmid= 11114197 |doi= 10.1073/pnas.260501497  | pmc=18930 }}
*{{cite journal  | author=Mahlknecht U, Schnittger S, Ottmann OG, ''et al.'' |title=Chromosomal organization and localization of the human histone deacetylase 5 gene (HDAC5). |journal=Biochim. Biophys. Acta |volume=1493 |issue= 3 |pages= 342-8 |year= 2000 |pmid= 11018260 |doi= }}
*{{Cite journal  | author=Fischle W |title=Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo |journal=J. Biol. Chem. |volume=276 |issue= 38 |pages= 35826–35 |year= 2001 |pmid= 11466315 |doi= 10.1074/jbc.M104935200  |name-list-format=vanc| author2=Dequiedt F  | author3=Fillion M  | display-authors=3  | last4=Hendzel  | first4=MJ  | last5=Voelter  | first5=W  | last6=Verdin  | first6=E }}
*{{cite journal  | author=Zhang CL, McKinsey TA, Lu JR, Olson EN |title=Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. |journal=J. Biol. Chem. |volume=276 |issue= 1 |pages= 35-9 |year= 2001 |pmid= 11022042 |doi= 10.1074/jbc.M007364200 }}
*{{Cite journal  |vauthors=McKinsey TA, Zhang CL, Olson EN |title=Identification of a Signal-Responsive Nuclear Export Sequence in Class II Histone Deacetylases |journal=Mol. Cell. Biol. |volume=21 |issue= 18 |pages= 6312–21 |year= 2001 |pmid= 11509672 |doi=10.1128/MCB.21.18.6312-6321.2001  | pmc=87361  }}
*{{cite journal  | author=McKinsey TA, Zhang CL, Lu J, Olson EN |title=Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. |journal=Nature |volume=408 |issue= 6808 |pages= 106-11 |year= 2000 |pmid= 11081517 |doi= 10.1038/35040593 }}
*{{Cite journal  | author=Ozawa Y |title=Histone deacetylase 3 associates with and represses the transcription factor GATA-2 |journal=Blood |volume=98 |issue= 7 |pages= 2116–23 |year= 2001 |pmid= 11567998 |doi=10.1182/blood.V98.7.2116 |name-list-format=vanc| author2=Towatari M | author3=Tsuzuki S | display-authors=3 | last4=Hayakawa  | first4=| last5=Maeda  | first5=| last6=Miyata  | first6=| last7=Tanimoto | first7=M  | last8=Saito  | first8=H  }}
*{{cite journal  | author=McKinsey TA, Zhang CL, Olson EN |title=Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 26 |pages= 14400-5 |year= 2001 |pmid= 11114197 |doi= 10.1073/pnas.260501497 }}
*{{Cite journal  | author=Potter GB |title=The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor |journal=Genes Dev. |volume=15 |issue= 20 |pages= 2687–701 |year= 2001 |pmid= 11641275 |doi= 10.1101/gad.916701  | pmc=312820  |name-list-format=vanc| author2=Beaudoin GM  | author3=DeRenzo CL  | display-authors=3  | last4=Zarach  | first4=JM  | last5=Chen  | first5=SH  | last6=Thompson  | first6=CC }}
*{{cite journal  | author=Fischle W, Dequiedt F, Fillion M, ''et al.'' |title=Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. |journal=J. Biol. Chem. |volume=276 |issue= 38 |pages= 35826-35 |year= 2001 |pmid= 11466315 |doi= 10.1074/jbc.M104935200 }}
*{{Cite journal  | author=Fischle W |title=Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR |journal=Mol. Cell |volume=9 |issue= 1 |pages= 45–57 |year= 2002 |pmid= 11804585 |doi=10.1016/S1097-2765(01)00429-4 |name-list-format=vanc| author2=Dequiedt F  | author3=Hendzel MJ  | display-authors=| last4=Guenther  | first4=Matthew G  | last5=Lazar  | first5=Mitchell A  | last6=Voelter  | first6=Wolfgang  | last7=Verdin  | first7=Eric  }}
*{{cite journal  | author=McKinsey TA, Zhang CL, Olson EN |title=Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. |journal=Mol. Cell. Biol. |volume=21 |issue= 18 |pages= 6312-21 |year= 2001 |pmid= 11509672 |doi= }}
*{{Cite journal  | author=Lemercier C |title=Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor |journal=J. Biol. Chem. |volume=277 |issue= 24 |pages= 22045–52 |year= 2002 |pmid= 11929873 |doi= 10.1074/jbc.M201736200  |name-list-format=vanc| author2=Brocard MP  | author3=Puvion-Dutilleul F  | display-authors=3  | last4=Kao  | first4=HY  | last5=Albagli  | first5=O  | last6=Khochbin  | first6=S }}
*{{cite journal | author=Ozawa Y, Towatari M, Tsuzuki S, ''et al.'' |title=Histone deacetylase 3 associates with and represses the transcription factor GATA-2. |journal=Blood |volume=98 |issue= 7 |pages= 2116-23 |year= 2001 |pmid= 11567998 |doi= }}
*{{Cite journal  | author=Huang Y |title=Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis |journal=Cancer Res. |volume=62 |issue= 10 |pages= 2913–22 |year= 2002 |pmid= 12019172 |doi=  |name-list-format=vanc| author2=Tan M  | author3=Gosink M  | display-authors=3  | last4=Wang  | first4=KK  | last5=Sun  | first5=Y }}
*{{cite journal | author=Potter GB, Beaudoin GM, DeRenzo CL, ''et al.'' |title=The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. |journal=Genes Dev. |volume=15 |issue= 20 |pages= 2687-701 |year= 2001 |pmid= 11641275 |doi= 10.1101/gad.916701 }}
*{{cite journal | author=Fischle W, Dequiedt F, Hendzel MJ, ''et al.'' |title=Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. |journal=Mol. Cell |volume=9 |issue= 1 |pages= 45-57 |year= 2002 |pmid= 11804585 |doi= }}
*{{cite journal  | author=Lemercier C, Brocard MP, Puvion-Dutilleul F, ''et al.'' |title=Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. |journal=J. Biol. Chem. |volume=277 |issue= 24 |pages= 22045-52 |year= 2002 |pmid= 11929873 |doi= 10.1074/jbc.M201736200 }}
*{{cite journal | author=Huang Y, Tan M, Gosink M, ''et al.'' |title=Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis. |journal=Cancer Res. |volume=62 |issue= 10 |pages= 2913-22 |year= 2002 |pmid= 12019172 |doi=  }}
}}
}}
{{refend}}
{{Refend}}


== External links ==
==External links==
* {{MeshName|HDAC5+protein,+human}}
* {{MeshName|HDAC5+protein,+human}}


{{protein-stub}}
{{NLM content}}
{{NLM content}}
{{Carbon-nitrogen non-peptide hydrolases}}
{{Enzymes}}
{{Portal bar|Molecular and Cellular Biology|border=no}}
{{DEFAULTSORT:Histone Deacetylase 5}}
[[Category:EC 3.5.1]]
[[Category:EC 3.5.1]]
{{WikiDoc Sources}}

Revision as of 16:54, 31 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.[1][2][3]

Function

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses histone deacetylase activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.[3]

AMP-activated protein kinase regulation of the glucose transporter GLUT4 occurs by phosphorylation of HDAC5.[4]

HDAC5 is involved in memory consolidation and suggests that development of more selective HDAC inhibitors for the treatment of Alzheimer's disease should avoid targeting HDAC5.[5] Its function can be effectively examined by siRNA knockdown based on an independent validation.[6]

Interactions

Histone deacetylase 5 has been shown to interact with:

See also

References

  1. 1.0 1.1 Grozinger CM, Hassig CA, Schreiber SL (June 1999). "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proc Natl Acad Sci U S A. 96 (9): 4868–73. doi:10.1073/pnas.96.9.4868. PMC 21783. PMID 10220385.
  2. Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ (June 1998). "Characterization of human colon cancer antigens recognized by autologous antibodies". Int J Cancer. 76 (5): 652–8. doi:10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P. PMID 9610721.
  3. 3.0 3.1 "Entrez Gene: HDAC5 histone deacetylase 5".
  4. McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M (2008). "AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5". Diabetes. 57 (4): 860–867. doi:10.2337/db07-0843. PMID 18184930.
  5. Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (January 2013). "Loss of HDAC5 impairs memory function: implications for Alzheimer's disease". J Alzheimers Dis. 33 (1): 35–44. doi:10.3233/JAD-2012-121009. PMID 22914591.
  6. Munkácsy, Gyöngyi; Sztupinszki, Zsófia; Herman, Péter; Bán, Bence; Pénzváltó, Zsófia; Szarvas, Nóra; Győrffy, Balázs (2016-01-01). "Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments". Molecular Therapy - Nucleic Acids. 5. doi:10.1038/mtna.2016.66. ISSN 2162-2531. PMC 5056990. PMID 27673562.
  7. 7.0 7.1 Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S (2002). "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor". J. Biol. Chem. 277 (24): 22045–52. doi:10.1074/jbc.M201736200. PMID 11929873.
  8. Zhang CL, McKinsey TA, Olson EN (2002). "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Mol. Cell. Biol. 22 (20): 7302–12. doi:10.1128/MCB.22.20.7302-7312.2002. PMC 139799. PMID 12242305.
  9. Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H (2003). "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene. 22 (57): 9176–84. doi:10.1038/sj.onc.1206902. PMID 14668799.
  10. 10.0 10.1 Zhang J, Kalkum M, Chait BT, Roeder RG (2002). "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Mol. Cell. 9 (3): 611–23. doi:10.1016/S1097-2765(02)00468-9. PMID 11931768.
  11. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002). "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Mol. Cell. 9 (1): 45–57. doi:10.1016/S1097-2765(01)00429-4. PMID 11804585.
  12. Grozinger CM, Schreiber SL (2000). "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proc. Natl. Acad. Sci. U.S.A. 97 (14): 7835–40. doi:10.1073/pnas.140199597. PMC 16631. PMID 10869435.
  13. Koipally J, Georgopoulos K (2002). "A molecular dissection of the repression circuitry of Ikaros". J. Biol. Chem. 277 (31): 27697–705. doi:10.1074/jbc.M201694200. PMID 12015313.
  14. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (2000). "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". J. Biol. Chem. 275 (20): 15594–9. doi:10.1074/jbc.M908437199. PMID 10748098.
  15. Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V (2004). "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Res. 32 (6): 1957–66. doi:10.1093/nar/gkh524. PMC 390375. PMID 15060175.
  16. 16.0 16.1 Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA (2000). "Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway". Genes Dev. 14 (1): 45–54. PMC 316335. PMID 10640275.
  17. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004). "Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5". Mol. Cell. Biol. 24 (19): 8374–85. doi:10.1128/MCB.24.19.8374-8385.2004. PMC 516754. PMID 15367659.
  18. Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A (2004). "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene. 23 (54): 8777–84. doi:10.1038/sj.onc.1208128. PMID 15467736.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.