Beta adrenergic receptor kinase-2: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | |||
}} | |||
'''Beta-adrenergic receptor kinase 2''' (beta-ARK-2) also known as '''G-protein-coupled receptor kinase 3''' (GRK3) is an [[enzyme]] that in humans is encoded by the ''ADRBK2'' [[gene]].<ref name="pmid7695743">{{cite journal | vauthors = Calabrese G, Sallese M, Stornaiuolo A, Stuppia L, Palka G, De Blasi A | title = Chromosome mapping of the human arrestin (SAG), beta-arrestin 2 (ARRB2), and beta-adrenergic receptor kinase 2 (ADRBK2) genes | journal = Genomics | volume = 23 | issue = 1 | pages = 286–8 |date=Feb 1995 | pmid = 7695743 | pmc = | doi = 10.1006/geno.1994.1497 }}</ref><ref name="entrez" /> | |||
{{ | |||
| | |||
== Function == | |||
The beta-adrenergic receptor kinase specifically [[phosphorylation|phosphorylates]] the agonist-occupied form of the [[adrenergic receptor|beta-adrenergic]] and related [[G protein-coupled receptor]]s. Overall, the beta adrenergic receptor kinase 2 has 85% amino acid similarity with [[beta adrenergic receptor kinase|beta adrenergic receptor kinase 1]], with the protein kinase catalytic domain having 95% similarity. These data suggest the existence of a family of [[beta-adrenergic-receptor kinase|receptor kinases]] which may serve broadly to regulate receptor function.<ref name="entrez">{{cite web | title = Entrez Gene: ADRBK2 adrenergic, beta, receptor kinase 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=157| accessdate = }}</ref> | |||
== Discovery == | |||
{{ | The beta adrenergic receptor kinase-2 was cloned from mice and rats in 1991<ref name="pmid1869533">{{cite journal | vauthors = Benovic JL, Onorato JJ, Arriza JL, Stone WC, Lohse M, Jenkins NA, Gilbert DJ, Copeland NG, Caron MG, Lefkowitz RJ | title = Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family | journal = J. Biol. Chem. | volume = 266 | issue = 23 | pages = 14939–46 |date=August 1991 | pmid = 1869533 | doi = | url = }}</ref> and the human gene was cloned in 1993.<ref name="pmid8427589">{{cite journal | vauthors = Parruti G, Ambrosini G, Sallese M, De Blasi A | title = Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2 | journal = Biochem. Biophys. Res. Commun. | volume = 190 | issue = 2 | pages = 475–81 |date=January 1993 | pmid = 8427589 | doi = 10.1006/bbrc.1993.1072 | url = }}</ref> | ||
| | |||
| | |||
== Clinical significance == | |||
[[Genetic linkage|Gene linkage]] techniques were used to identify a mutation in the ''GRK3'' gene as a possible cause of up to 10% of cases of [[bipolar disorder]].<ref name="pmid12808434">{{cite journal | vauthors = Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR | title = Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder | journal = Mol. Psychiatry | volume = 8 | issue = 5 | pages = 546–57 |date=May 2003 | pmid = 12808434 | doi = 10.1038/sj.mp.4001268 | url = }}</ref> Beta adrenergic receptor kinase-2 appears to affect [[dopamine]] metabolism. Subsequent studies, while noting that chromosome 22q12 may harbor a risk gene for [[schizophrenia]], did not find that the gene coding for beta adrenergic receptor kinase-2 was linked to schizophrenia.<ref name="pmid15006433">{{cite journal | vauthors = Yu SY, Takahashi S, Arinami T, Ohkubo T, Nemoto Y, Tanabe E, Fukura Y, Matsuura M, Han YH, Zhou RL, Shen YC, Matsushima E, Kojima T | title = Mutation screening and association study of the beta-adrenergic receptor kinase 2 gene in schizophrenia families | journal = Psychiatry Res | volume = 125 | issue = 2 | pages = 95–104 |date=February 2004 | pmid = 15006433 | doi = 10.1016/j.psychres.2003.12.003 | url = }}</ref> | |||
<!--To do: which chromosome, what pathways, explain the biology a bit--> | |||
It has been associated with [[WHIM syndrome]].<ref name="pmid18274673">{{cite journal |author=Balabanian K |title=Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling |journal=J. Clin. Invest. |volume=118 |issue=3 |pages=1074–84 |date=March 2008 |pmid=18274673 |pmc=2242619 |doi=10.1172/JCI33187 |name-list-format=vanc|author2=Levoye A |author3=Klemm L |display-authors=3 |last4=Lagane |first4=Bernard |last5=Hermine |first5=Olivier |last6=Harriague |first6=Julie |last7=Baleux |first7=Françoise |last8=Arenzana-Seisdedos |first8=Fernando |last9=Bachelerie |first9=Françoise }}</ref> | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
Line 131: | Line 23: | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | author=Benovic JL | *{{cite journal | author=Benovic JL |title=Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family |journal=J. Biol. Chem. |volume=266 |issue= 23 |pages= 14939–46 |year= 1991 |pmid= 1869533 |doi= |name-list-format=vanc| author2=Onorato JJ | author3=Arriza JL | display-authors=3 | last4=Stone | first4=WC | last5=Lohse | first5=M | last6=Jenkins | first6=NA | last7=Gilbert | first7=DJ | last8=Copeland | first8=NG | last9=Caron | first9=MG }} | ||
*{{cite journal | vauthors=Parruti G, Ambrosini G, Sallese M, De Blasi A |title=Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2 |journal=Biochem. Biophys. Res. Commun. |volume=190 |issue= 2 |pages= 475–81 |year= 1993 |pmid= 8427589 |doi=10.1006/bbrc.1993.1072 }} | |||
*{{cite journal | | *{{cite journal | vauthors=Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ |title=Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C |journal=J. Biol. Chem. |volume=271 |issue= 22 |pages= 13266–72 |year= 1996 |pmid= 8662816 |doi=10.1074/jbc.271.22.13266 }} | ||
*{{cite journal | | *{{cite journal | author=Premont RT |title=β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 24 |pages= 14082–7 |year= 1998 |pmid= 9826657 |doi=10.1073/pnas.95.24.14082 | pmc=24330 |name-list-format=vanc| author2=Claing A | author3=Vitale N | display-authors=3 | last4=Freeman | first4=JL | last5=Pitcher | first5=JA | last6=Patton | first6=WA | last7=Moss | first7=J | last8=Vaughan | first8=M | last9=Lefkowitz | first9=RJ }} | ||
*{{cite journal | author=Premont RT | *{{cite journal | vauthors=Oppermann M, Mack M, Proudfoot AE, Olbrich H |title=Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus |journal=J. Biol. Chem. |volume=274 |issue= 13 |pages= 8875–85 |year= 1999 |pmid= 10085131 |doi=10.1074/jbc.274.13.8875 }} | ||
*{{cite journal | author=Dunham I |title=The DNA sequence of human chromosome 22 |journal=Nature |volume=402 |issue= 6761 |pages= 489–95 |year= 1999 |pmid= 10591208 |doi= 10.1038/990031 |name-list-format=vanc| author2=Shimizu N | author3=Roe BA | display-authors=3 | last4=Bruskiewich | first4=R. | last5=Beare | first5=D. M. | last6=Clamp | first6=M. | last7=Smink | first7=L. J. | last8=Ainscough | first8=R. | last9=Almeida | first9=J. P. }} | |||
*{{cite journal | vauthors=Inngjerdingen M, Damaj B, Maghazachi AA |title=Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309 |journal=J. Immunol. |volume=164 |issue= 8 |pages= 4048–54 |year= 2000 |pmid= 10754297 |doi= 10.4049/jimmunol.164.8.4048}} | |||
*{{cite journal | | *{{cite journal | author=Celver JP |title=Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in Xenopus oocytes |journal=J. Biol. Chem. |volume=276 |issue= 7 |pages= 4894–900 |year= 2001 |pmid= 11060299 |doi= 10.1074/jbc.M007437200 |name-list-format=vanc| author2=Lowe J | author3=Kovoor A | display-authors=3 | last4=Gurevich | first4=VV | last5=Chavkin | first5=C }} | ||
*{{cite journal | author= | *{{cite journal | author=Blaukat A |title=Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function |journal=J. Biol. Chem. |volume=276 |issue= 44 |pages= 40431–40 |year= 2001 |pmid= 11517230 |doi= 10.1074/jbc.M107024200 |name-list-format=vanc| author2=Pizard A | author3=Breit A | display-authors=3 | last4=Wernstedt | first4=C | last5=Alhenc-Gelas | first5=F | last6=Muller-Esterl | first6=W | last7=Dikic | first7=I }} | ||
*{{cite journal | author=Wang J |title=Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages |journal=J. Biol. Chem. |volume=276 |issue= 52 |pages= 49236–43 |year= 2002 |pmid= 11668182 |doi= 10.1074/jbc.M108523200 |name-list-format=vanc| author2=Guan E | author3=Roderiquez G | display-authors=3 | last4=Calvert | first4=V | last5=Alvarez | first5=R | last6=Norcross | first6=MA }} | |||
*{{cite journal | | *{{cite journal | author=Obara K |title=G-protein coupled receptor kinase 2 and 3 expression in human detrusor cultured smooth muscle cells |journal=Urol. Res. |volume=29 |issue= 5 |pages= 325–9 |year= 2002 |pmid= 11762794 |doi=10.1007/s002400100207 |name-list-format=vanc| author2=Arai K | author3=Tomita Y | display-authors=3 | last4=Hatano | first4=Akihiko | last5=Takahashi | first5=Kota }} | ||
*{{cite journal | author= | *{{cite journal | vauthors=Mandyam CD, Thakker DR, Christensen JL, Standifer KM |title=Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk |journal=J. Pharmacol. Exp. Ther. |volume=302 |issue= 2 |pages= 502–9 |year= 2002 |pmid= 12130708 |doi= 10.1124/jpet.102.033159 }} | ||
*{{cite journal | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |name-list-format=vanc| author2=Feingold EA | author3=Grouse LH | display-authors=3 | last4=Derge | first4=JG | last5=Klausner | first5=RD | last6=Collins | first6=FS | last7=Wagner | first7=L | last8=Shenmen | first8=CM | last9=Schuler | first9=GD }} | |||
*{{cite journal | author=Barrett TB |title=Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder |journal=Mol. Psychiatry |volume=8 |issue= 5 |pages= 546–57 |year= 2004 |pmid= 12808434 |doi= 10.1038/sj.mp.4001268 |name-list-format=vanc| author2=Hauger RL | author3=Kennedy JL | display-authors=3 | last4=Sadovnick | first4=A D | last5=Remick | first5=R A | last6=Keck | first6=P E | last7=McElroy | first7=S L | last8=Alexander | first8=M | last9=Shaw | first9=S H }} | |||
*{{cite journal | author= | *{{cite journal | author=Ota T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |name-list-format=vanc| author2=Suzuki Y | author3=Nishikawa T | display-authors=3 | last4=Otsuki | first4=Tetsuji | last5=Sugiyama | first5=Tomoyasu | last6=Irie | first6=Ryotaro | last7=Wakamatsu | first7=Ai | last8=Hayashi | first8=Koji | last9=Sato | first9=Hiroyuki }} | ||
*{{cite journal | vauthors=Dzimiri N, Muiya P, Andres E, Al-Halees Z |title=Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases |journal=Eur. J. Pharmacol. |volume=489 |issue= 3 |pages= 167–77 |year= 2005 |pmid= 15087239 |doi= 10.1016/j.ejphar.2004.03.015 }} | |||
*{{cite journal | author= | *{{cite journal | author=Teli T |title=Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization |journal=Mol. Endocrinol. |volume=19 |issue= 2 |pages= 474–90 |year= 2005 |pmid= 15498832 |doi= 10.1210/me.2004-0275 |name-list-format=vanc| author2=Markovic D | author3=Levine MA | display-authors=3 | last4=Hillhouse | first4=EW | last5=Grammatopoulos | first5=DK }} | ||
*{{cite journal | author=Feng YH |title=ATP stimulates GRK-3 phosphorylation and β-arrestin-2-dependent internalization of P2X7 receptor |journal=Am. J. Physiol., Cell Physiol. |volume=288 |issue= 6 |pages= C1342–56 |year= 2005 |pmid= 15728711 |doi= 10.1152/ajpcell.00315.2004 | pmc=2598767 |name-list-format=vanc| author2=Wang L | author3=Wang Q | display-authors=3 | last4=Li | first4=X | last5=Zeng | first5=R | last6=Gorodeski | first6=GI }} | |||
*{{cite journal | author= | *{{cite journal | author=Rual JF |title=Towards a proteome-scale map of the human protein-protein interaction network |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 |name-list-format=vanc| author2=Venkatesan K | author3=Hao T | display-authors=3 | last4=Hirozane-Kishikawa | first4=Tomoko | last5=Dricot | first5=Amélie | last6=Li | first6=Ning | last7=Berriz | first7=Gabriel F. | last8=Gibbons | first8=Francis D. | last9=Dreze | first9=Matija }} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
Line 156: | Line 47: | ||
== External links == | == External links == | ||
* [http://www.nature.com/cgi-taf/DynaPage.taf?file=/mp/journal/v8/n5/abs/4001268a.html&dynoptions=doi1056040331 Online version of the paper in ''Molecular Psychiatry''] | * [http://www.nature.com/cgi-taf/DynaPage.taf?file=/mp/journal/v8/n5/abs/4001268a.html&dynoptions=doi1056040331 Online version of the paper in ''Molecular Psychiatry''] | ||
* [ | * [https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12808434&dopt=Abstract PubMed abstract] | ||
* [http://www.sciencedaily.com/releases/2003/06/030617080403.htm Report from sciencedaily.com] | * [http://www.sciencedaily.com/releases/2003/06/030617080403.htm Report from sciencedaily.com] | ||
* {{UCSC gene info|ADRBK2}} | |||
{{Serine/threonine-specific protein kinases}} | |||
{{Enzymes}} | |||
{{Portal bar|Molecular and Cellular Biology|border=no}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
[[Category: | {{DEFAULTSORT:Beta Adrenergic Receptor Kinase-2}} | ||
[[Category:Human genes]] | |||
[[Category:Biology of bipolar disorder]] | |||
[[Category:EC 2.7.11]] |
Revision as of 04:55, 30 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Beta-adrenergic receptor kinase 2 (beta-ARK-2) also known as G-protein-coupled receptor kinase 3 (GRK3) is an enzyme that in humans is encoded by the ADRBK2 gene.[1][2]
Function
The beta-adrenergic receptor kinase specifically phosphorylates the agonist-occupied form of the beta-adrenergic and related G protein-coupled receptors. Overall, the beta adrenergic receptor kinase 2 has 85% amino acid similarity with beta adrenergic receptor kinase 1, with the protein kinase catalytic domain having 95% similarity. These data suggest the existence of a family of receptor kinases which may serve broadly to regulate receptor function.[2]
Discovery
The beta adrenergic receptor kinase-2 was cloned from mice and rats in 1991[3] and the human gene was cloned in 1993.[4]
Clinical significance
Gene linkage techniques were used to identify a mutation in the GRK3 gene as a possible cause of up to 10% of cases of bipolar disorder.[5] Beta adrenergic receptor kinase-2 appears to affect dopamine metabolism. Subsequent studies, while noting that chromosome 22q12 may harbor a risk gene for schizophrenia, did not find that the gene coding for beta adrenergic receptor kinase-2 was linked to schizophrenia.[6]
It has been associated with WHIM syndrome.[7]
References
- ↑ Calabrese G, Sallese M, Stornaiuolo A, Stuppia L, Palka G, De Blasi A (Feb 1995). "Chromosome mapping of the human arrestin (SAG), beta-arrestin 2 (ARRB2), and beta-adrenergic receptor kinase 2 (ADRBK2) genes". Genomics. 23 (1): 286–8. doi:10.1006/geno.1994.1497. PMID 7695743.
- ↑ 2.0 2.1 "Entrez Gene: ADRBK2 adrenergic, beta, receptor kinase 2".
- ↑ Benovic JL, Onorato JJ, Arriza JL, Stone WC, Lohse M, Jenkins NA, Gilbert DJ, Copeland NG, Caron MG, Lefkowitz RJ (August 1991). "Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family". J. Biol. Chem. 266 (23): 14939–46. PMID 1869533.
- ↑ Parruti G, Ambrosini G, Sallese M, De Blasi A (January 1993). "Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2". Biochem. Biophys. Res. Commun. 190 (2): 475–81. doi:10.1006/bbrc.1993.1072. PMID 8427589.
- ↑ Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR (May 2003). "Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder". Mol. Psychiatry. 8 (5): 546–57. doi:10.1038/sj.mp.4001268. PMID 12808434.
- ↑ Yu SY, Takahashi S, Arinami T, Ohkubo T, Nemoto Y, Tanabe E, Fukura Y, Matsuura M, Han YH, Zhou RL, Shen YC, Matsushima E, Kojima T (February 2004). "Mutation screening and association study of the beta-adrenergic receptor kinase 2 gene in schizophrenia families". Psychiatry Res. 125 (2): 95–104. doi:10.1016/j.psychres.2003.12.003. PMID 15006433.
- ↑ Balabanian K, Levoye A, Klemm L, et al. (March 2008). "Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling". J. Clin. Invest. 118 (3): 1074–84. doi:10.1172/JCI33187. PMC 2242619. PMID 18274673.
Further reading
- Benovic JL, Onorato JJ, Arriza JL, et al. (1991). "Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family". J. Biol. Chem. 266 (23): 14939–46. PMID 1869533.
- Parruti G, Ambrosini G, Sallese M, De Blasi A (1993). "Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2". Biochem. Biophys. Res. Commun. 190 (2): 475–81. doi:10.1006/bbrc.1993.1072. PMID 8427589.
- Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ (1996). "Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C". J. Biol. Chem. 271 (22): 13266–72. doi:10.1074/jbc.271.22.13266. PMID 8662816.
- Premont RT, Claing A, Vitale N, et al. (1998). "β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein". Proc. Natl. Acad. Sci. U.S.A. 95 (24): 14082–7. doi:10.1073/pnas.95.24.14082. PMC 24330. PMID 9826657.
- Oppermann M, Mack M, Proudfoot AE, Olbrich H (1999). "Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus". J. Biol. Chem. 274 (13): 8875–85. doi:10.1074/jbc.274.13.8875. PMID 10085131.
- Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22". Nature. 402 (6761): 489–95. doi:10.1038/990031. PMID 10591208.
- Inngjerdingen M, Damaj B, Maghazachi AA (2000). "Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309". J. Immunol. 164 (8): 4048–54. doi:10.4049/jimmunol.164.8.4048. PMID 10754297.
- Celver JP, Lowe J, Kovoor A, et al. (2001). "Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in Xenopus oocytes". J. Biol. Chem. 276 (7): 4894–900. doi:10.1074/jbc.M007437200. PMID 11060299.
- Blaukat A, Pizard A, Breit A, et al. (2001). "Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function". J. Biol. Chem. 276 (44): 40431–40. doi:10.1074/jbc.M107024200. PMID 11517230.
- Wang J, Guan E, Roderiquez G, et al. (2002). "Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages". J. Biol. Chem. 276 (52): 49236–43. doi:10.1074/jbc.M108523200. PMID 11668182.
- Obara K, Arai K, Tomita Y, et al. (2002). "G-protein coupled receptor kinase 2 and 3 expression in human detrusor cultured smooth muscle cells". Urol. Res. 29 (5): 325–9. doi:10.1007/s002400100207. PMID 11762794.
- Mandyam CD, Thakker DR, Christensen JL, Standifer KM (2002). "Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk". J. Pharmacol. Exp. Ther. 302 (2): 502–9. doi:10.1124/jpet.102.033159. PMID 12130708.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Barrett TB, Hauger RL, Kennedy JL, et al. (2004). "Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder". Mol. Psychiatry. 8 (5): 546–57. doi:10.1038/sj.mp.4001268. PMID 12808434.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Dzimiri N, Muiya P, Andres E, Al-Halees Z (2005). "Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases". Eur. J. Pharmacol. 489 (3): 167–77. doi:10.1016/j.ejphar.2004.03.015. PMID 15087239.
- Teli T, Markovic D, Levine MA, et al. (2005). "Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization". Mol. Endocrinol. 19 (2): 474–90. doi:10.1210/me.2004-0275. PMID 15498832.
- Feng YH, Wang L, Wang Q, et al. (2005). "ATP stimulates GRK-3 phosphorylation and β-arrestin-2-dependent internalization of P2X7 receptor". Am. J. Physiol., Cell Physiol. 288 (6): C1342–56. doi:10.1152/ajpcell.00315.2004. PMC 2598767. PMID 15728711.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
External links
- Online version of the paper in Molecular Psychiatry
- PubMed abstract
- Report from sciencedaily.com
- Human ADRBK2 genome location and ADRBK2 gene details page in the UCSC Genome Browser.