Casein kinase 2: Difference between revisions
mNo edit summary |
m (→Structure: task, replaced: Clinical Cancer Research : an Official Journal of the American Association for Cancer Research → Clinical Cancer Research using AWB) |
||
Line 4: | Line 4: | ||
[[File:Tertiary_Structure_of_CK2_Tetramer.png|thumb|400x400px|Ribbon structure of CK2 tetramer containing two α and two β subunits]]CK2 typically appears as a tetramer of two α subunits; α being 42 kDa and α’ being 38 kDa, and two β subunits, each weighing in at 28 kDa.<ref name="Ahmad_2008" /> The β regulatory domain only has one isoform<ref name="Litchfield_2003">{{cite journal | vauthors = Litchfield DW | title = Protein kinase CK2: structure, regulation and role in cellular decisions of life and death | journal = The Biochemical Journal | volume = 369 | issue = Pt 1 | pages = 1–15 | year = 2003 | pmid = 12396231 | pmc = 1223072 | doi = 10.1042/BJ20021469 }}</ref> and therefore within the tetramer will have two β subunits. The catalytic α domains appear as an α or α’ variant and can either be formed in a homodimer (α & α, or α’ & α’) formation or heterodimer formation (α & α’).<ref name="Litchfield_2003" /> It is worth noting that other β isoforms have been found in other organisms but not in humans.<ref name="Litchfield_2003" /> | [[File:Tertiary_Structure_of_CK2_Tetramer.png|thumb|400x400px|Ribbon structure of CK2 tetramer containing two α and two β subunits]]CK2 typically appears as a tetramer of two α subunits; α being 42 kDa and α’ being 38 kDa, and two β subunits, each weighing in at 28 kDa.<ref name="Ahmad_2008" /> The β regulatory domain only has one isoform<ref name="Litchfield_2003">{{cite journal | vauthors = Litchfield DW | title = Protein kinase CK2: structure, regulation and role in cellular decisions of life and death | journal = The Biochemical Journal | volume = 369 | issue = Pt 1 | pages = 1–15 | year = 2003 | pmid = 12396231 | pmc = 1223072 | doi = 10.1042/BJ20021469 }}</ref> and therefore within the tetramer will have two β subunits. The catalytic α domains appear as an α or α’ variant and can either be formed in a homodimer (α & α, or α’ & α’) formation or heterodimer formation (α & α’).<ref name="Litchfield_2003" /> It is worth noting that other β isoforms have been found in other organisms but not in humans.<ref name="Litchfield_2003" /> | ||
The α subunits do not require the β regulatory subunits to function, this allows dimers to form of the catalytic domains independent of β subunit transcription. The presence of these α subunits does have an effect on the phosphorylation targets of CK2.<ref name="Rabalski_2016">{{cite journal | vauthors = Rabalski AJ, Gyenis L, Litchfield DW | title = Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells | journal = Clinical | The α subunits do not require the β regulatory subunits to function, this allows dimers to form of the catalytic domains independent of β subunit transcription. The presence of these α subunits does have an effect on the phosphorylation targets of CK2.<ref name="Rabalski_2016">{{cite journal | vauthors = Rabalski AJ, Gyenis L, Litchfield DW | title = Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells | journal = Clinical Cancer Research | volume = 22 | issue = 12 | pages = 2840–7 | year = 2016 | pmid = 27306791 | doi = 10.1158/1078-0432.CCR-15-1314 }}</ref> A functional difference between α and α’ has been found but the exact nature of differences isn’t fully understood yet. An example is that Caspase 3 is preferentially [[Phosphorylation|phosphorylated]] by α’ based tetramers over α based tetramers.<ref name="Rabalski_2016" /> | ||
== Function == | == Function == | ||
CK2 is a protein kinase responsible for phosphorylation of substrates in various pathways within a cell; [[Adenosine triphosphate|ATP]] or [[Guanosine triphosphate|GTP]] can be used as phosphate source.<ref name="Ahmad_2008" /> CK2 has a dual functionality with involvement in cell growth/proliferation and suppression of [[apoptosis]].<ref name="Ahmad_2008" /> CK2s anti-apoptotic function is in the continuation of the cell cycle; from G1 to S phase and G2 to M phase checkpoints.<ref name="Litchfield_2003" /> This function is achieved by protecting proteins from caspase-mediated apoptosis via phosphorylation of sites adjacent to the caspase cleavage site, blocking the activity of caspase proteins. CK2 also protects from drug-induced apoptosis via similar methods but it is not as well understood.<ref name="Litchfield_2003" /> Knockdown studies of both α and α’ sub-units have been used to verify this anti-apoptotic function. | CK2 is a protein kinase responsible for phosphorylation of substrates in various pathways within a cell; [[Adenosine triphosphate|ATP]] or [[Guanosine triphosphate|GTP]] can be used as phosphate source.<ref name="Ahmad_2008" /> CK2 has a dual functionality with involvement in cell growth/proliferation and suppression of [[apoptosis]].<ref name="Ahmad_2008" /> CK2s anti-apoptotic function is in the continuation of the cell cycle; from G1 to S phase and G2 to M phase checkpoints.<ref name="Litchfield_2003" /> This function is achieved by protecting proteins from caspase-mediated apoptosis via phosphorylation of sites adjacent to the caspase cleavage site, blocking the activity of caspase proteins. CK2 also protects from drug-induced apoptosis via similar methods but it is not as well understood.<ref name="Litchfield_2003" /> Knockdown studies of both α and α’ sub-units have been used to verify this anti-apoptotic function. |
Revision as of 15:38, 7 December 2017
Casein kinase 2 (EC 2.7.11.1)(CK2/CSNK2) is a serine/threonine-selective protein kinase that has been implicated in cell cycle control, DNA repair, regulation of the circadian rhythm, and other cellular processes. De-regulation of CK2 has been linked to tumorigenesis as a potential protection mechanism for mutated cells. Proper CK2 function is necessary for survival of cells as no knockout models have been successfully generated.[1]
Structure
CK2 typically appears as a tetramer of two α subunits; α being 42 kDa and α’ being 38 kDa, and two β subunits, each weighing in at 28 kDa.[1] The β regulatory domain only has one isoform[2] and therefore within the tetramer will have two β subunits. The catalytic α domains appear as an α or α’ variant and can either be formed in a homodimer (α & α, or α’ & α’) formation or heterodimer formation (α & α’).[2] It is worth noting that other β isoforms have been found in other organisms but not in humans.[2]
The α subunits do not require the β regulatory subunits to function, this allows dimers to form of the catalytic domains independent of β subunit transcription. The presence of these α subunits does have an effect on the phosphorylation targets of CK2.[3] A functional difference between α and α’ has been found but the exact nature of differences isn’t fully understood yet. An example is that Caspase 3 is preferentially phosphorylated by α’ based tetramers over α based tetramers.[3]
Function
CK2 is a protein kinase responsible for phosphorylation of substrates in various pathways within a cell; ATP or GTP can be used as phosphate source.[1] CK2 has a dual functionality with involvement in cell growth/proliferation and suppression of apoptosis.[1] CK2s anti-apoptotic function is in the continuation of the cell cycle; from G1 to S phase and G2 to M phase checkpoints.[2] This function is achieved by protecting proteins from caspase-mediated apoptosis via phosphorylation of sites adjacent to the caspase cleavage site, blocking the activity of caspase proteins. CK2 also protects from drug-induced apoptosis via similar methods but it is not as well understood.[2] Knockdown studies of both α and α’ sub-units have been used to verify this anti-apoptotic function.
Important phosphorylation events also regulated by CK2 are found in DNA damage repair pathways, and multiple stress-signaling pathways. Examples are phosphorylation of p53 or MAPK,[2] which both regulate many interactions within their respective cellular pathways.
Another indication of separate function of α subunits is that mice that lack CK2α’ have a defect in the morphology of developing sperm.[4]
Regulation of CK2
Although the targets of CK2 are predominantly nucleus-based the protein itself is localized to both the nucleus and cytoplasm.[1] Casein kinase 2 activity has been reported to be activated following Wnt signaling pathway activation.[5] A Pertussis toxin-sensitive G protein and Dishevelled appear to be an intermediary between Wnt-mediated activation of the Frizzled receptor and activation of CK2. Further studies need to be done on the regulation of this protein due to the complexity of CK2 function and localization.
Role in Tumorigenesis
Among the array of substrates that can be altered by CK2 many of them have been found in increased prevalence in cancers of the breast, lung, colon, and prostate.[3] An increased concentration of substrates in cancerous cells infers a likely survival benefit to the cell, and activation of many of these substrates requires CK2. As well the anti-apoptotic function of CK2 allows the cancerous cell to escapes cell death and continue proliferating. Having roles in cell cycle regulation may also indicate CK2’s role in allowing cell cycle progression when normally it should have been ceased. This also promotes CK2 as a possible therapeutic target for cancer drugs. When added with other potent anti-cancer therapies, a CK2 inhibitor may increase the effectiveness of the other therapy by allowing drug-induced apoptosis to occur at a normal rate.[3]
Protein Subunit Information
See also
- CSNK2A1
- CSNK2A2
- Casein kinase 1 — a distinct protein kinase family
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008). "Protein kinase CK2--a key suppressor of apoptosis". Advances in Enzyme Regulation. 48: 179–87. doi:10.1016/j.advenzreg.2008.04.002. PMC 2593134. PMID 18492491.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Litchfield DW (2003). "Protein kinase CK2: structure, regulation and role in cellular decisions of life and death". The Biochemical Journal. 369 (Pt 1): 1–15. doi:10.1042/BJ20021469. PMC 1223072. PMID 12396231.
- ↑ 3.0 3.1 3.2 3.3 Rabalski AJ, Gyenis L, Litchfield DW (2016). "Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells". Clinical Cancer Research. 22 (12): 2840–7. doi:10.1158/1078-0432.CCR-15-1314. PMID 27306791.
- ↑ Xu X, Toselli PA, Russell LD, Seldin DC (1999). "Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit". Nature Genetics. 23 (1): 118–21. doi:10.1038/12729. PMID 10471512.
- ↑ Gao Y, Wang HY (2006). "Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling". The Journal of Biological Chemistry. 281 (27): 18394–400. doi:10.1074/jbc.M601112200. PMID 16672224.