Actin, alpha 1: Difference between revisions

Jump to navigation Jump to search
 
imported>Ira Leviton
m Fixed a typo found with Wikipedia:Typo_Team/moss.
 
Line 9: Line 9:


==Skeletal actin gene expression==
==Skeletal actin gene expression==
Skeletal alpha actin expression is induced by stimuli and conditions known to cause muscle formation.<ref>{{cite journal | doi = 10.1016/0012-1606(92)90067-Q | last1 = Bandman | first1 = E | title = Contractile protein isoforms in muscle development. | journal = Developmental Biology | volume = 154 | issue = 2 | pages = 273–83 | year = 1992 | pmid = 1358730 }}</ref> Such conditions result in fusion of committed cells (satellite cells) into myotubes, to form muscle fibers. Skeletal actin itself, when expressed, causes expression of several other "myogenic genes", which are essential to muscle formation.<ref>{{cite journal | last1 = Gunning | first1 = PW | last2 = Ferguson | first2 = V | last3 = Brennan | first3 = KJ | last4 = Hardeman | first4 = EC | title = Alpha-skeletal actin induces a subset of muscle genes independently of muscle differentiation and withdrawal from the cell cycle. | journal = Journal of Cell Science | volume = 114 | issue = Pt 3 | pages = 513–24 | year = 2001 | pmid = 11171321 }}</ref> One key transcription factor that activates skeletal actin gene expression is Serum Response Factor ("SRF"), a protein that binds to specific sites on the promoter DNA of the actin gene.<ref>{{cite journal | last1 = Belaguli | first1 = NS | last2 = Zhou | first2 = W | last3 = Trinh | first3 = TH | last4 = Majesky | first4 = MW | last5 = Schwartz | first5 = RJ | title = Dominant negative murine serum response factor: alternative splicing within the activation domain inhibits transactivation of serum response factor binding targets. | journal = Molecular and Cellular Biology | volume = 19 | issue = 7 | pages = 4582–91 | year = 1999 | pmid = 10373507 | pmc = 84256 }}</ref> SRF may bring a number of other proteins to the promoter of skeletal actin, such as andogen receptor, and thereby contribute to induction of skeletal actin gene expression by androgenic (often termed "anabolic") steroids.<ref>{{cite journal | last1 = Vlahopoulos | first1 = S | last2 = Zimmer | first2 = WE | last3 = Jenster | first3 = G | last4 = Belaguli | first4 = NS | last5 = Balk | first5 = SP | last6 = Brinkmann | first6 = AO | last7 = Lanz | first7 = RB | last8 = Zoumpourlis | first8 = VC | last9 = Schwartz | first9 = RJ  | title = Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene. | journal = The Journal of Biological Chemistry | volume = 280 | issue = 9 | pages = 7786–92 | year = 2005 | pmid = 15623502 | doi = 10.1074/jbc.M413992200 }}</ref>
Skeletal alpha actin expression is induced by stimuli and conditions known to cause muscle formation.<ref>{{cite journal | doi = 10.1016/0012-1606(92)90067-Q | last1 = Bandman | first1 = E | title = Contractile protein isoforms in muscle development. | journal = Developmental Biology | volume = 154 | issue = 2 | pages = 273–83 | year = 1992 | pmid = 1358730 }}</ref> Such conditions result in fusion of committed cells (satellite cells) into myotubes, to form muscle fibers. Skeletal actin itself, when expressed, causes expression of several other "myogenic genes", which are essential to muscle formation.<ref>{{cite journal | last1 = Gunning | first1 = PW | last2 = Ferguson | first2 = V | last3 = Brennan | first3 = KJ | last4 = Hardeman | first4 = EC | title = Alpha-skeletal actin induces a subset of muscle genes independently of muscle differentiation and withdrawal from the cell cycle. | journal = Journal of Cell Science | volume = 114 | issue = Pt 3 | pages = 513–24 | year = 2001 | pmid = 11171321 }}</ref> One key transcription factor that activates skeletal actin gene expression is Serum Response Factor ("SRF"), a protein that binds to specific sites on the promoter DNA of the actin gene.<ref>{{cite journal | last1 = Belaguli | first1 = NS | last2 = Zhou | first2 = W | last3 = Trinh | first3 = TH | last4 = Majesky | first4 = MW | last5 = Schwartz | first5 = RJ | title = Dominant negative murine serum response factor: alternative splicing within the activation domain inhibits transactivation of serum response factor binding targets. | journal = Molecular and Cellular Biology | volume = 19 | issue = 7 | pages = 4582–91 | year = 1999 | pmid = 10373507 | pmc = 84256 }}</ref> SRF may bring a number of other proteins to the promoter of skeletal actin, such as androgen receptor, and thereby contribute to induction of skeletal actin gene expression by androgenic (often termed "anabolic") steroids.<ref>{{cite journal | last1 = Vlahopoulos | first1 = S | last2 = Zimmer | first2 = WE | last3 = Jenster | first3 = G | last4 = Belaguli | first4 = NS | last5 = Balk | first5 = SP | last6 = Brinkmann | first6 = AO | last7 = Lanz | first7 = RB | last8 = Zoumpourlis | first8 = VC | last9 = Schwartz | first9 = RJ  | title = Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene. | journal = The Journal of Biological Chemistry | volume = 280 | issue = 9 | pages = 7786–92 | year = 2005 | pmid = 15623502 | doi = 10.1074/jbc.M413992200 }}</ref>


==Interactions==
==Interactions==
Line 39: Line 39:
*{{cite journal  |vauthors=Shoeman RL, Kesselmier C, Mothes E |title=Non-viral cellular substrates for human immunodeficiency virus type 1 protease. |journal=FEBS Lett. |volume=278 |issue= 2 |pages= 199–203 |year= 1991 |pmid= 1991513 |doi=10.1016/0014-5793(91)80116-K  |display-authors=etal}}
*{{cite journal  |vauthors=Shoeman RL, Kesselmier C, Mothes E |title=Non-viral cellular substrates for human immunodeficiency virus type 1 protease. |journal=FEBS Lett. |volume=278 |issue= 2 |pages= 199–203 |year= 1991 |pmid= 1991513 |doi=10.1016/0014-5793(91)80116-K  |display-authors=etal}}
*{{cite journal  |vauthors=Winder SJ, Walsh MP |title=Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. |journal=J. Biol. Chem. |volume=265 |issue= 17 |pages= 10148–55 |year= 1990 |pmid= 2161834 |doi=  }}
*{{cite journal  |vauthors=Winder SJ, Walsh MP |title=Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. |journal=J. Biol. Chem. |volume=265 |issue= 17 |pages= 10148–55 |year= 1990 |pmid= 2161834 |doi=  }}
*{{cite journal  |vauthors=Kabsch W, Mannherz HG, Suck D |title=Atomic structure of the actin:DNase I complex. |journal=Nature |volume=347 |issue= 6288 |pages= 37–44 |year= 1990 |pmid= 2395459 |doi= 10.1038/347037a0 |display-authors=etal}}
*{{cite journal  |vauthors=Kabsch W, Mannherz HG, Suck D |title=Atomic structure of the actin:DNase I complex. |journal=Nature |volume=347 |issue= 6288 |pages= 37–44 |year= 1990 |pmid= 2395459 |doi= 10.1038/347037a0 |display-authors=etal|bibcode=1990Natur.347...37K }}
*{{cite journal  |vauthors=Takahashi K, Hiwada K, Kokubu T |title=Vascular smooth muscle calponin. A novel troponin T-like protein. |journal=Hypertension |volume=11 |issue= 6 Pt 2 |pages= 620–6 |year= 1988 |pmid= 2455687 |doi=  10.1161/01.hyp.11.6.620}}
*{{cite journal  |vauthors=Takahashi K, Hiwada K, Kokubu T |title=Vascular smooth muscle calponin. A novel troponin T-like protein. |journal=Hypertension |volume=11 |issue= 6 Pt 2 |pages= 620–6 |year= 1988 |pmid= 2455687 |doi=  10.1161/01.hyp.11.6.620}}
*{{cite journal  |vauthors=Taylor A, Erba HP, Muscat GE, Kedes L |title=Nucleotide sequence and expression of the human skeletal alpha-actin gene: evolution of functional regulatory domains. |journal=Genomics |volume=3 |issue= 4 |pages= 323–36 |year= 1989 |pmid= 2907503 |doi=10.1016/0888-7543(88)90123-1  }}
*{{cite journal  |vauthors=Taylor A, Erba HP, Muscat GE, Kedes L |title=Nucleotide sequence and expression of the human skeletal alpha-actin gene: evolution of functional regulatory domains. |journal=Genomics |volume=3 |issue= 4 |pages= 323–36 |year= 1989 |pmid= 2907503 |doi=10.1016/0888-7543(88)90123-1  }}

Latest revision as of 17:04, 29 September 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Actin, alpha skeletal muscle is a protein that in humans is encoded by the ACTA1 gene.[1][2]

Actin alpha 1 which is expressed in skeletal muscle is one of six different actin isoforms which have been identified. Actins are highly conserved proteins that are involved in cell motility, structure and integrity. Alpha actins are a major constituent of the contractile apparatus.[3]

Skeletal actin gene expression

Skeletal alpha actin expression is induced by stimuli and conditions known to cause muscle formation.[4] Such conditions result in fusion of committed cells (satellite cells) into myotubes, to form muscle fibers. Skeletal actin itself, when expressed, causes expression of several other "myogenic genes", which are essential to muscle formation.[5] One key transcription factor that activates skeletal actin gene expression is Serum Response Factor ("SRF"), a protein that binds to specific sites on the promoter DNA of the actin gene.[6] SRF may bring a number of other proteins to the promoter of skeletal actin, such as androgen receptor, and thereby contribute to induction of skeletal actin gene expression by androgenic (often termed "anabolic") steroids.[7]

Interactions

Actin, alpha 1 has been shown to interact with TMSB4X,[8][9] MIB2[10] and PRKCE.[11]

See also

References

  1. Mogensen J, Kruse TA, Borglum AD (March 1999). "Assignment of the human skeletal muscle [FC12]a-actin gene (ACTA1) to chromosome 1q42.13-->q42.2 by radiation hybrid mapping". Cytogenet Cell Genet. 83 (3–4): 224–5. doi:10.1159/000015184. PMID 10072583.
  2. Gunning P, Ponte P, Okayama H, Engel J, Blau H, Kedes L (August 1983). "Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed". Mol Cell Biol. 3 (5): 787–95. doi:10.1128/mcb.3.5.787. PMC 368601. PMID 6865942.
  3. "Entrez Gene: ACTA1 actin, alpha 1, skeletal muscle".
  4. Bandman, E (1992). "Contractile protein isoforms in muscle development". Developmental Biology. 154 (2): 273–83. doi:10.1016/0012-1606(92)90067-Q. PMID 1358730.
  5. Gunning, PW; Ferguson, V; Brennan, KJ; Hardeman, EC (2001). "Alpha-skeletal actin induces a subset of muscle genes independently of muscle differentiation and withdrawal from the cell cycle". Journal of Cell Science. 114 (Pt 3): 513–24. PMID 11171321.
  6. Belaguli, NS; Zhou, W; Trinh, TH; Majesky, MW; Schwartz, RJ (1999). "Dominant negative murine serum response factor: alternative splicing within the activation domain inhibits transactivation of serum response factor binding targets". Molecular and Cellular Biology. 19 (7): 4582–91. PMC 84256. PMID 10373507.
  7. Vlahopoulos, S; Zimmer, WE; Jenster, G; Belaguli, NS; Balk, SP; Brinkmann, AO; Lanz, RB; Zoumpourlis, VC; Schwartz, RJ (2005). "Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene". The Journal of Biological Chemistry. 280 (9): 7786–92. doi:10.1074/jbc.M413992200. PMID 15623502.
  8. Ballweber, Edda; Hannappel Ewald; Huff Thomas; Stephan Harald; Haener Markus; Taschner Nicole; Stoffler Daniel; Aebi Ueli; Mannherz Hans Georg (January 2002). "Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin". J. Mol. Biol. England. 315 (4): 613–25. doi:10.1006/jmbi.2001.5281. ISSN 0022-2836. PMID 11812134.
  9. Safer, D; Sosnick T R; Elzinga M (May 1997). "Thymosin beta 4 binds actin in an extended conformation and contacts both the barbed and pointed ends". Biochemistry. UNITED STATES. 36 (19): 5806–16. doi:10.1021/bi970185v. ISSN 0006-2960. PMID 9153421.
  10. Takeuchi, Tamotsu; Heng Henry H Q; Ye Christine J; Liang Sheng-Ben; Iwata Jun; Sonobe Hiroshi; Ohtsuki Yuji (October 2003). "Down-regulation of a novel actin-binding molecule, skeletrophin, in malignant melanoma". Am. J. Pathol. United States. 163 (4): 1395–404. doi:10.1016/S0002-9440(10)63497-9. ISSN 0002-9440. PMC 1868282. PMID 14507647.
  11. England, Karen; Ashford David; Kidd Daniel; Rumsby Martin (June 2002). "PKC epsilon is associated with myosin IIA and actin in fibroblasts". Cell. Signal. England. 14 (6): 529–36. doi:10.1016/S0898-6568(01)00277-7. ISSN 0898-6568. PMID 11897493.

External links

Further reading