Dual specificity mitogen-activated protein kinase kinase 2 is an enzyme that in humans is encoded by the MAP2K2gene.[1] It is more commonly known as MEK2, but has many alternative names including CFC4, MKK2, MAPKK2 and PRKMK2. [2]
The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is known to play a critical role in mitogen growth factor signal transduction. It phosphorylates and thus activates MAPK1/ERK2 and MAPK3/ERK1.
The activation of this kinase itself is dependent on the Ser/Thr phosphorylation by MAP kinase kinase kinases.
The inhibition or degradation of this kinase is found to be involved in the pathogenesis of Yersinia and anthrax.[3]
↑Marti, A; Luo Z; Cunningham C; Ohta Y; Hartwig J; Stossel T P; Kyriakis J M; Avruch J (Jan 1997). "Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells". J. Biol. Chem. UNITED STATES. 272 (5): 2620–8. doi:10.1074/jbc.272.5.2620. ISSN0021-9258. PMID9006895.
↑Butch, E R; Guan K L (Feb 1996). "Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2". J. Biol. Chem. UNITED STATES. 271 (8): 4230–5. doi:10.1074/jbc.271.8.4230. ISSN0021-9258. PMID8626767.
↑Zheng, C F; Guan K L (Nov 1993). "Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases". J. Biol. Chem. UNITED STATES. 268 (32): 23933–9. ISSN0021-9258. PMID8226933.
↑Yin, Xiang L; Chen She; Yan Jun; Hu Yun; Gu Jian X (Feb 2002). "Identification of interaction between MEK2 and A-Raf-1". Biochim. Biophys. Acta. Netherlands. 1589 (1): 71–6. doi:10.1016/S0167-4889(01)00188-4. ISSN0006-3002. PMID11909642.
Further reading
Joseph AM, Kumar M, Mitra D (2005). "Nef: "necessary and enforcing factor" in HIV infection". Curr. HIV Res. 3 (1): 87–94. doi:10.2174/1570162052773013. PMID15638726.
Zheng CF, Guan KL (1993). "Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases". J. Biol. Chem. 268 (32): 23933–9. PMID8226933.
Moriguchi T, Gotoh Y, Nishida E (1996). "Activation of two isoforms of mitogen-activated protein kinase kinase in response to epidermal growth factor and nerve growth factor". Eur. J. Biochem. 234 (1): 32–8. doi:10.1111/j.1432-1033.1995.032_c.x. PMID8529659.
Butch ER, Guan KL (1996). "Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2". J. Biol. Chem. 271 (8): 4230–5. doi:10.1074/jbc.271.8.4230. PMID8626767.
Papin C, Denouel A, Calothy G, Eychène A (1996). "Identification of signalling proteins interacting with B-Raf in the yeast two-hybrid system". Oncogene. 12 (10): 2213–21. PMID8668348.
Downey GP, Butler JR, Brumell J, et al. (1996). "Chemotactic peptide-induced activation of MEK-2, the predominant isoform in human neutrophils. Inhibition by wortmannin". J. Biol. Chem. 271 (35): 21005–1011. doi:10.1074/jbc.271.35.21005. PMID8702863.
Menegon A, Leoni C, Benfenati F, Valtorta F (1997). "Tat protein from HIV-1 activates MAP kinase in granular neurons and glial cells from rat cerebellum". Biochem. Biophys. Res. Commun. 238 (3): 800–5. doi:10.1006/bbrc.1997.7393. PMID9325171.
Denouel-Galy A, Douville EM, Warne PH (1998). "Murine Ksr interacts with MEK and inhibits Ras-induced transformation". Curr. Biol. 8 (1): 46–55. doi:10.1016/S0960-9822(98)70019-3. PMID9427625.
Gibellini D, Bassini A, Pierpaoli S (1998). "Extracellular HIV-1 Tat protein induces the rapid Ser133 phosphorylation and activation of CREB transcription factor in both Jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells". J. Immunol. 160 (8): 3891–8. PMID9558095.
Tanimura S, Chatani Y, Hoshino R (1998). "Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering". Oncogene. 17 (1): 57–65. doi:10.1038/sj.onc.1201905. PMID9671314.