Cytoskeleton

Revision as of 04:26, 6 March 2009 by Zorkun (talk | contribs)
Jump to navigation Jump to search
The eukaryotic cytoskeleton. Actin filaments are shown in red, microtubules in green, and the nuclei are in blue.

WikiDoc Resources for Cytoskeleton

Articles

Most recent articles on Cytoskeleton

Most cited articles on Cytoskeleton

Review articles on Cytoskeleton

Articles on Cytoskeleton in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Cytoskeleton

Images of Cytoskeleton

Photos of Cytoskeleton

Podcasts & MP3s on Cytoskeleton

Videos on Cytoskeleton

Evidence Based Medicine

Cochrane Collaboration on Cytoskeleton

Bandolier on Cytoskeleton

TRIP on Cytoskeleton

Clinical Trials

Ongoing Trials on Cytoskeleton at Clinical Trials.gov

Trial results on Cytoskeleton

Clinical Trials on Cytoskeleton at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Cytoskeleton

NICE Guidance on Cytoskeleton

NHS PRODIGY Guidance

FDA on Cytoskeleton

CDC on Cytoskeleton

Books

Books on Cytoskeleton

News

Cytoskeleton in the news

Be alerted to news on Cytoskeleton

News trends on Cytoskeleton

Commentary

Blogs on Cytoskeleton

Definitions

Definitions of Cytoskeleton

Patient Resources / Community

Patient resources on Cytoskeleton

Discussion groups on Cytoskeleton

Patient Handouts on Cytoskeleton

Directions to Hospitals Treating Cytoskeleton

Risk calculators and risk factors for Cytoskeleton

Healthcare Provider Resources

Symptoms of Cytoskeleton

Causes & Risk Factors for Cytoskeleton

Diagnostic studies for Cytoskeleton

Treatment of Cytoskeleton

Continuing Medical Education (CME)

CME Programs on Cytoskeleton

International

Cytoskeleton en Espanol

Cytoskeleton en Francais

Business

Cytoskeleton in the Marketplace

Patents on Cytoskeleton

Experimental / Informatics

List of terms related to Cytoskeleton

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [1] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

The cytoskeleton is a cellular "scaffolding" or "skeleton" contained, as all other organelles, within the cytoplasm. It is contained in all eukaryotic cells and recent research has shown it can be present in prokaryotic cells too.[1] It is a dynamic structure that maintains cell shape, and also has been known to protect the cell, enables some cell motion (using structures such as flagella and cilia), and plays important roles in both intra-cellular transport (the movement of vesicles and organelles, for example) and cellular division. It is a bone-like structure floating around within the cytoplasm.

The prokaryotic cytoskeleton

The cytoskeleton was previously thought to be a feature only of eukaryotic cells, but homologues to all the major proteins of the eukaryotic cytoskeleton have recently been found in prokaryotes. Although the evolutionary relationships are so distant that they are not obvious from protein sequence comparisons alone, the similarity of their three-dimensional structures provides strong evidence that the eukaryotic and prokaryotic cytoskeletons are truly homologous.

FtsZ

FtsZ was the first protein of the prokaryotic cytoskeleton to be identified. Like tubulin, FtsZ forms filaments in the presence of GTP, but these filaments do not group into tubules. During cell division, FtsZ is the first protein to move to the division site, and is essential for recruiting other proteins that synthesize the new cell wall between the dividing cells.

MreB and ParM

Prokaryotic actin-like proteins, such as MreB, are involved in the maintenance of cell shape. All non-spherical bacteria have genes encoding actin-like proteins, and these proteins form a helical network beneath the cell membrane that guides the proteins involved in cell wall biosynthesis.

Some plasmids encode a partitioning system that involves an actin-like protein ParM. Filaments of ParM exhibit dynamic instability, and may partition plasmid DNA into the dividing daughter cells by a mechanism analogous to that used by microtubules during eukaryotic mitosis.

Crescentin

The bacterium Caulobacter crescentus contains a third protein, crescentin, that is related to the intermediate filaments of eukaryotic cells. Crescentin is also involved in maintaining cell shape, but the mechanism by which it does this is currently unclear.

References

  1. Shih Y L, Rothfield L (2006). "The Bacterial Cytoskeleton". Microbiol Mol Biol Rev. 70 (3): 729–754. PMID 16959967.

Further reading

  • Linda A. Amos and W. Gradshaw Amos, Molecules of the Cytoskeletion, Guilford, ISBN 0-89862-404-5, LoC QP552.C96A46 1991

External links

ar:هيكل خلوي bn:সাইটোকঙ্কাল bg:Цитоскелет ca:Citosquelet cs:Cytoskelet da:Cytoskelet de:Zytoskelett gl:Citoesqueleto ko:세포골격 hr:Citoskeleton it:Citoscheletro he:שלד התא lb:Zytoskelett lt:Citoskeletas nl:Cytoskelet oc:Citoesquelèt sk:Cytoskelet sr:Цитоскелет sh:Citoskelet fi:Solun tukiranka sv:Cellskelett Template:Jb1 Template:WH Template:WS