Phosphate reactions

Revision as of 00:56, 17 February 2020 by Marshallsumter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
File:Apatite Canada.jpg
Apatite-(CaF) (fluorapatite) is the doubly-terminated crystal in calcite. Credit: Didier Descouens.

Phosphate reactions are chemical reactions that lead to the transformation of one set of phosphates into another.

Phosphoruses

File:PhosphorusAllotropes.svg
White phosphorus and resulting allotropes, including violet phosphorus, are indicated. Credit: UserXresu.
File:PhosphComby.jpg
White phosphorus is under water on the left, with red phosphorus (center images), and violet phosporus right. Credit: Materialscientist.

Def. "a chemical element (symbol P) with an atomic number of 15,[1] that exists in several allotropic forms"[2] is called phosphorus.

"Elemental phosphorus can exist in several allotropes; the most common of which are white and red solids. Solid violet and black allotropes are also known."[3]

"It would appear that violet phosphorus is a polymer of high relative molecular mass, which on heating breaks down into P2 molecules. On cooling, these would normally dimerize to give P4 molecules (i.e. white phosphorus) but, in vacuo, they link up again to form the polymeric violet allotrope."[3]

Ions

Def. "any salt or ester of phosphoric acid"[4] is called a phosphate.

The phosphate ion is a polyatomic ion with the empirical formula PO3−
4
and a molar mass of 94.97 g/mol. It consists of one central phosphorus atom surrounded by four oxygen atoms in a tetrahedral arrangement. The phosphate ion carries a negative three formal charge. The phosphate ion is a hypervalent molecule (the phosphorus atom has 10 electrons in its valence shell).

Each of the phosphate ions: PO43-, hydrogen phosphate, HPO42-, and dihydrogen phosphate H2PO41- may form salts with one or more positive ions, or esters with one or more organics or organophosphates.

Phosphorus acids

Oxidation state Formula Name Acidic protons Compounds
+1 HH2PO2 hypophosphorous acid 1 acid, salts
+3 H2HPO3 phosphorous acid 2 acid, salts
+3 HPO2 metaphosphorous acid 1 salts
+3 H3PO3 (ortho)phosphorous acid 3 acid, salts
+4 H4P2O6 hypophosphoric acid 4 acid, salts
+5 (HPO3)n metaphosphoric acids n salts (n=3,4,6)
+5 H(HPO3)nOH polyphosphoric acids n+2 acids, salts (n=1-6)
+5 H5P3O10 tripolyphosphoric acid 3 salts
+5 H4P2O7 pyrophosphoric acid 4 acid, salts
+5 H3PO4 (ortho)phosphoric acid 3 acid, salts

Orthophosphoric acids

Def. "[a] colourless liquid, H3PO4"[5] is called phosphoric acid.

Def. "[o]rdinary phosphoric acid, H3PO4", after orthophosphoric acid, is called orthophosphoric acid.

"Orthophosphoric acid is a non-toxic, inorganic, rather weak triprotic acid, [that] is a very polar molecule ... soluble in water. ... Triprotic means that an orthophosphoric acid molecule can dissociate up to three times, giving up an H+ each time, which typically combines with a water molecule, H2O, as shown in these reactions:

H3PO4(s)   + H2O(l) <=> H3O+(aq) + H2PO4(aq)       Ka1= 7.25×10−3
H2PO4(aq)+ H2O(l) <=> H3O+(aq) + HPO42−(aq)       Ka2= 6.31×10−8
HPO42−(aq)+ H2O(l) <=> H3O+(aq) +  PO43−(aq)        Ka3= 3.98×10−13

The anion after the first dissociation, H2PO4, is the dihydrogen phosphate anion. The anion after the second dissociation, HPO42−, is the hydrogen phosphate anion. The anion after the third dissociation, PO43−, is the phosphate or orthophosphate anion. For each of the dissociation reactions shown above, there is a separate acid dissociation constant, called Ka1, Ka2, and Ka3 given at 25 °C. Associated with these three dissociation constants are corresponding pKa1=2.12 , pKa2=7.21 , and pKa3=12.67 values at 25 °C."[6]

"For a given total acid concentration [A] = [H3PO4] + [H2PO4] + [HPO42−] + [PO43−] ([A] is the total number of moles of pure H3PO4 which have been used to prepare 1 liter of solution), the composition of an aqueous solution of phosphoric acid can be calculated using the equilibrium equations associated with the three reactions described above together with the [H+][OH] = 10−14 relation and the electrical neutrality equation. Possible concentrations of polyphosphoric molecules and ions is neglected. The system may be reduced to a fifth degree equation for [H+] which can be solved numerically, yielding:"[6]

[A] (mol/L) pH [H3PO4]/[A] (%) [H2PO4]/[A] (%) [HPO42−]/[A] (%) [PO43−]/[A] (%)
1 1.08 91.7 8.29 6.20×10−6 1.60×10−17
10−1 1.62 76.1 23.9 6.20×10−5 5.55×10−16
10−2 2.25 43.1 56.9 6.20×10−4 2.33×10−14
10−3 3.05 10.6 89.3 6.20×10−3 1.48×10−12
10−4 4.01 1.30 98.6 6.19×10−2 1.34×10−10
10−5 5.00 0.133 99.3 0.612 1.30×10−8
10−6 5.97 1.34×10−2 94.5 5.50 1.11×10−6
10−7 6.74 1.80×10−3 74.5 25.5 3.02×10−5
10−10 7.00 8.24×10−4 61.7 38.3 8.18×10−5

Pyrophosphoric acids

Def. the "[syrupy liquid] acid formed by the dehydration of [i.e., removing a molecule of water from] two molecules of phosphoric acid [to form one molecule of] H4P2O7"[7] is called pyrophosphoric acid.

Oligophosphoric acids

Def. a series of phosphoric acids condensed into one molecule when the number of phosphoric acids is small, per the general formula Hn+2PnO3n+1, where n is usually greater than 5, is called an oligophosphoric acid.[8]

Chemical reaction

A chemical reaction is a process that leads to the transformation of one set of chemical substances to another.[9] Different chemical reactions are used in combination (chemical synthesis) in order to get a desired product. In biochemistry, series of chemical reactions catalyzed by enzymes form metabolic pathways, by which syntheses and decompositions ordinarily impossible in conditions within a cell are performed. Organic reactions encompass a wide assortment involving compounds which have carbon as the main element in their molecular structure. The reactions in which an organic compound may take part are largely defined by its functional groups.

Phosphates

A phosphate salt forms when a positively charged ion attaches to the negatively charged oxygen atoms of the ion, forming an ionic compound. Many phosphates are not soluble in water at standard temperature and pressure. The sodium, potassium, rubidium, caesium and ammonium phosphates are all water soluble. Most other phosphates are only slightly soluble or are insoluble in water. As a rule, the hydrogen and dihydrogen phosphates are slightly more soluble than the corresponding phosphates. The pyrophosphates are mostly water soluble.

A phosphate can occur as a salt of phosphoric acid or an ester of phosphoric acid (an organophosphate). Phosphates are found pervasively in biology.

Def. "[a]ny salt or ester of phosphoric acid"[4] is called phosphate.

Def. any "salt or ester of pyrophosphoric acid"[10] is called a pyrophosphate.

Def. "any of a class of inorganic polymers containing linked phosphate groups"[11] is called a polyphosphate.

Phosphate can occur as hydroxyapatite Ca5(PO4)3OH, which is often dissolved from vertebrate bones and teeth.

Pnictogen minerals

File:Arsenopyrite, Panasqueira Mine, Portugal.jpg
Arsenopyrite is an arsenic-containing mineral. Credit: jjharrison89.

Def. any "element from the nitrogen group [group 15] of the periodic table; nitrogen, phosphorus, arsenic, antimony and bismuth"[12] is called a pnictogen.

Some of the pnictogens like phosphorus, arsenic, antimony and bismuth, occur as metalloids.

Arsenopyrite on the right is 33.3 at % arsenic.

Phosphorites

Phosphorite, phosphate rock or rock phosphate, is a non-detrital sedimentary rock which contains high amounts of phosphate bearing minerals. It is also present, where as fluorapatite can originate from hydrothermal veins. Other sources also include chemically dissolved phosphates minerals from igneous and metamorphic rocks.

The phosphate content of phosphorite is at least 15 to 20% which is a large enrichment over the typical sedimentary rock content of less than 0.2%.[13] The phosphate is present as fluorapatite Ca5(PO4)3F typically in cryptocrystalline masses (grain sizes < 1 μm) referred to as collophane].[13]

Limestones and mudstones are common phosphate bearing rocks.[14]

Bio-organics

Inside a cell, phosphate may be structural to a nucleic acid such as DNA, RNA or phospholipid, form high-energy ester bonds (e.g., in adenosine triphosphate), or participate in signaling. Outside the cell, phosphate may be dissolved in extracellular fluid (ECF) or form structures such as bone and teeth.

Bio-organic phosphates

Notation: let the symbols ATP, CTP, GTP, NTP, and UTP stand for adenosine triphosphate, cytidine triphosphate, guanosine triphosphate, nucleotide triphosphate, and uridine triphosphate, respectively.

Notation: let the symbols ADP, CDP, GDP, NDP, and UDP stand for adenosine diphosphate, cytidine diphosphate, guanosine diphosphate, nucleotide diphosphate, and uridine diphosphate, respectively.

Notation: let the symbols AMP, CMP, GMP, NMP, and UMP stand for adenosine monophosphate, cytidine monophosphate, guanosine monophosphate, nucleotide monophosphate, and uridine monophosphate, respectively.

Phosphate metabolism

The complete set of chemical reactions that involve changes to or transfer of phosphate constitute phosphate metabolism. Phosphate is often the limiting nutrient in many environments; i.e., its availability governs the rate of growth of many organisms. Bringing phosphate in any form into the cell and when needed transporting phosphate out of the cell is a necessary activity of phosphate homeostasis for that cell. An organism that can regulate its internal environment so as to maintain equilibrium has the property of homeostasis. When an organism changes its phosphate needs according to the transformation of circumstances, it has the property of phosphate transistasis.

Phosphate bioenergetics

Bioenergetics concerns energy flow through living systems. This area of biological research includes the study of cellular processes such as cellular respiration that can lead to production and utilization of energy in forms such as ATP molecules. Living cells use phosphate to transport cellular energy via nucleotides such as adenosine triphosphate (ATP). Nearly every cellular process that uses energy obtains it in the form of ATP.

Nicotinamide adenine dinucleotide (NADH)

ATP + (6S)-6-Hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide <=> ADP + Orthophosphate (Pi) + NADH : (6S)-6-Hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ATP-hydrolysing) EC 4.2.1.93 KEGG R00129,[15] no genes.

Phosphate decomposition

Chemical decomposition or analysis is the separation of a chemical compound into elements or smaller compounds. It is sometimes defined as the opposite of a chemical synthesis. A broader definition of the term decomposition also includes the breakdown of one phase into two or more phases.[16]

Polyphosphate

Def. any "compound or anion containing several phosphate groups"[17] is called an oligophosphate.

Def.' "any of a class of inorganic polymers containing linked phosphate groups"[11], or more than five linked phosphoric acids, is called a polyphosphate.

Def. any "of several enzymes that hydrolyze phosphate esters"[18] is called a phosphatase.

Def. any "enzyme that catalyses the hydrolysis of a polyphosphate to an oligophosphate"[19] is called an endopolyphosphatase.

Polyphosphate + nH2O <=> (n+1)Oligophosphate : Endopolyphosphatase or Polyphosphate polyphosphohydrolase EC 3.6.1.10 KEGG reaction R00001,[20] no human genes.

"More than one hundred years ago, L. Liberman (1890) found high-polymeric inorganic polyphosphates (PolyPs) in yeast."[21] PolyPs are linear polymers containing a few to several hundred residues of orthophosphate (Pi) linked by energy-rich (high-energy phosphate) phosphoanhydride bonds.[21] They occur in representatives of all kingdoms of living organisms, including higher animals.[21] In bacteria PolyPs are directly related to switching-over the genetic program characteristic of exponential growth to the program for cell survival under stationary conditions.[21]

PolyPs have been found in humans with long chains of ~150 residues and short chains of 25-45 residues.[21] PolyP may act as a regulator of calcification and decalcification in bone tissue, in addition to PPi.[21] PolyP is present in blood plasma and serum.[22] And, PolyP occurs in nearly all cellular compartments, including the nucleus (long chains), mitochondria, lysosomes, and plasma membrane.[23]

The enzyme EC 3.6.1.10 polyphosphate polyphosphohydrolase is usually referred to as endopolyphosphatase.[24] Although the KEGG database lists no human genes, endopolyphosphatase activity is present in bone-forming osteoblasts.[23]

Polyphosphate (nPi) + H2O <=> Polyphosphate (n-1)(Pi) + Orthophosphate (Pi) : Polyphosphate phosphohydrolase EC 3.6.1.11 KEGG reaction R03042.[25]

Human GeneID: 58497[26] PRUNE; prune homolog (Drosophila) (EC:3.6.1.1); exopolyphosphatase [EC:3.6.1.11].[27] This gene is an ortholog, a copy of an EC 3.6.1.11 gene from another species.

Exopolyphosphatase activity occurs in human-mandible-derived osteoblast-like cells.[21] Its activity has been found extracellularly, e.g., in synovial fluid, human blood plasma and serum.[22]

Triphosphate

Triphosphate + H2O <=> Diphosphate + Orthophosphate (Pi) : Triphosphate phosphohydrolase EC 3.6.1.25 KEGG reaction R00138,[28] no genes.

Pyrophosphate

Diphosphate + H2O <=> 2Orthophosphate : diphosphate phosphohydrolase, pyrophosphate phosphohydrolase EC 3.6.1.1 KEGG reaction R00004.[29]

Human GeneID: 5464 PPA1; pyrophosphatase (inorganic) 1 (EC: 3.6.1.1); K01507 inorganic pyrophosphatase [EC: 3.6.1.1]

Human GeneID: 27068 PPA2; pyrophosphatase (inorganic) 2 (EC:3.6.1.1); K01507 inorganic pyrophosphatase [EC: 3.6.1.1]

Human GeneID: 64077 LHPP; phospholysine phosphohistidine inorganic pyrophosphate phosphatase (EC: 3.6.1.1); K11725 phospholysine phosphohistidine inorganic pyrophosphate phosphatase [EC: 3.6.1.1, EC: 3.1.3.-]

Human GeneID: 89797 NAV2; neuron navigator 2 (EC: 3.6.1.1).

Specificity varies with the source and with the activating metal ion, e.g. Mg2+.[30]

The pyrophosphate (diphosphate) anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and in the absence of enzymic catalysis hydrolyzes extremely slowly into inorganic phosphate in all but highly acidic media:[31]

This hydrolysis to inorganic phosphate effectively renders the cleavage of ATP to AMP and PPi ultimately irreversible, and biochemical reactions coupled to this hydrolysis are irreversible as well, unless EC 3.6.1.1 is present. EC 3.6.1.1 can reverse the hydrolysis.[30]

Pathways:

  1. Oxidative phosphorylation

Phosphate redox reactions

Of the many redox reactions that occur in biochemistry, there are several that use nucleotides to accomplish either the oxidation or reduction.

Ferredoxin

16 ATP + 16H2O + 8(Reduced ferredoxin) <=> 8e- + 16Orthophosphate + 16ADP + 8(Oxidized ferredoxin) : Dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 KEGG R00002,[32] no human genes. Template:Seealso Nitrogenase is composed of two proteins (dinitrogen reductase and dinitrogenase) required for activity.[33] Nitrogenase needs an iron-molybdenum cofactor to catalyze the reduction of N2 to ammonia (NH3).[34] It also requires Mg2+.[33]

Dinitrogenase is a molybdenum-iron protein that reduces dinitrogen (N2) in three successive two-electron reductions to (1) diimine, (2) hydrazine, and (3) two molecules of ammonia. Molybdenum may be replaced by vanadium or iron. The reduction is initiated by the formation of hydrogen in stoichiometric amounts.[35]

Dinitrogen reductase is a [4Fe-4S] protein that generates an electron, using two molecules of ATP and ferredoxin. The electron is transferred to dinitrogenase (molybdoferredoxin).

Each electron (e-) transferred to dinitrogenase by dinitrogenase reductase is coupled to the hydrolysis of 2MgATP molecules.[36]

Electrons passed to dinitrogenase are channeled to the iron-molybdenum cofactor (prosthetic group), which is the ultimate site of substrate reduction.

2e- + 2H+ <=> H2 : dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 R00067,[37] no human genes.

N2 + 2e- + 2H+ <=> Diimine (HN=NH) : dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 R02802,[38] no human genes.

Diimine + 2e- + 2H+ <=> Hydrazine : dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 R04782,[39] no human genes.

Hydrazine + 2e- + 2H+ <=> 2NH3 : dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 R00153,[40] no human genes.

Cofactors:

  1. iron-iron (prosthetic group)
  2. iron-molybdenum (prosthetic group)
  3. iron-vanadium (prosthetic group)

Pathways:

  1. Metabolic pathways
  2. Nitrogen metabolism
  3. Tetrachloroethene degradation

16ATP + N2 + 8(Reduced ferredoxin) + 8H+ + 16H2O <=> 16Orthophosphate + 16ADP + 8(Oxidized ferredoxin) + 2NH3 + H2 : dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 R05185,[41] no human genes. Ferredoxin may be replaced by flavodoxin.

Acetylene is also reduced by nitrogenase to ethylene (but only very slowly to ethane).

Acetylene + (Reduced ferredoxin) + 2H+ + ATP + H2O <=> Ethylene + (Oxidized ferredoxin) + ADP + Orthophosphate : dinitrogen oxidoreductase (ATP-hydrolysing), nitrogenase EC 1.18.6.1 R05496,[42] no human genes.

Azide can be reduced by nitrogenase to N2 and ammonia (NH3).[43][44]

Nitrogenase can reduce cyanide to methane and ammonia (NH3).[43][44]

In the absence of a suitable substrate, hydrogen is slowly formed. Ferredoxin may be replaced by flavodoxin.

Flavodoxin

nATP + N2 + 6(Reduced flavodoxin) + nH2O <=> nOrthophosphate + nADP + 6(Oxidized flavodoxin) + 2NH3 : nitrogenase (flavodoxin) EC 1.19.6.1 R05186,[45] no human genes. The reaction is a multistep process similar to R05185, but with the following differences:

nATP + N2 + 6(Reduced flavodoxin) + 6H+ <=> nPhosphate + nADP + 6(Oxidized flavodoxin) + 2NH3.[46]

Phosphate isomerisation

A phosphate containing compound that undergoes a structural rearrangement of the phosphate(s) without any change in its net atomic composition has formed an isomer.

Phosphate synthesis

In a phosphate combination reaction two or more phosphates or phosphate containing compounds unite to form a more complex product.

D-Ribulose 1,5-bisphosphate

2(3-Phospho-D-glycerate) <=> D-Ribulose 1,5-bisphosphate + CO2 + H2O : 3-phospho-D-glycerate carboxy-lyase (dimerizing; D-ribulose-1,5-bisphosphate-forming) EC 4.1.1.39 R00024, no human genes.[47]

Cofactors:

  1. Cu2+

Pathways:

  1. Carbon fixation in photosynthetic organisms
  2. Metabolic pathways

Nicotinamide adenine dinucleotide phosphate

Orthophosphate (Pi) + NAD+ <=> NADP+ + H2O : NADP+ 2'-phosphohydrolase EC 3.1.3.- R00118.[48]

Human GeneID: 8776 MTMR1; myotubularin related protein 1 ; K01112 [EC:3.1.3.-]

Human GeneID: 8898 MTMR2; myotubularin related protein 2 ; K01112 [EC:3.1.3.-]

Human GeneID: 9107 MTMR6; myotubularin related protein 6 ; K01112 [EC:3.1.3.-]

Human GeneID: 9108 MTMR7; myotubularin related protein 7 (EC:3.1.3.-)

Human GeneID: 22876 INPP5F; inositol polyphosphate-5-phosphatase F (EC:3.1.3.-)

Human GeneID: 29085 PHPT1; phosphohistidine phosphatase 1 (EC:3.1.3.-); K01112 [EC:3.1.3.-]

HumanGeneID: 51095 TRNT1; tRNA nucleotidyl transferase, CCA-adding, 1 (EC:2.7.7.25); K00974 tRNA nucleotidyltransferase (CCA-adding enzyme) [EC:2.7.7.25 2.7.7.21 3.1.3.- 3.1.4.-]

Human GeneID: 51496 CTDSPL2; CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2 (EC:3.1.3.-)

Human GeneID: 55613 MTMR8; myotubularin related protein 8 (EC:3.1.3.-)

Human GeneID: 64077 LHPP; phospholysine phosphohistidine inorganic pyrophosphate phosphatase (EC:3.6.1.1); K11725 phospholysine phosphohistidine inorganic pyrophosphate phosphatase [EC:3.6.1.1 3.1.3.-]

Human GeneID: 81537 SGPP1; sphingosine-1-phosphate phosphatase 1 ; K04716 sphingosine-1-phosphate phosphatase 1 [EC:3.1.3.-]

Human GeneID: 84814 PPAPDC3; phosphatidic acid phosphatase type 2 domain containing 3 (EC:3.1.3.-)

Human GeneID: 130367 SGPP2; sphingosine-1-phosphate phosphotase 2 ; K04717 sphingosine-1-phosphate phosphotase 2 [EC:3.1.3.-]

Adenosine diphosphate

AMP + Orthophosphate (Pi) <=> ADP + H2O : ADP phosphohydrolase EC 3.6.1.5 R00122.[49]

Human GeneID: 953 ENTPD1; ectonucleoside triphosphate diphosphohydrolase 1 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Human GeneID: 956 ENTPD3; ectonucleoside triphosphate diphosphohydrolase 3 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Human GeneID: 377841 ENTPD8; ectonucleoside triphosphate diphosphohydrolase 8 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Phosphate anabolism

Similar to phosphate synthesis, phosphate anabolism is the set of metabolic pathways that construct phosphates or phosphate containing molecules from smaller phosphates or phosphate containing units.[50] In short, an increase in the number of phosphates per molecule is phosphate anabolism. For example,

Pyrophosphate (R00004).

2Orthophosphate <=> Diphosphate + H2O : diphosphate phosphohydrolase; pyrophosphate phosphohydrolase EC 3.6.1.1.

This reaction is the second step of the oxidative phosphorylation pathway (ec00190)[51] to convert oligophosphate or polyphosphate to orthophosphate prior to creation of ATP by ATP synthase. In reverse, it is the 3rd step in the ATPase process of converting ATP into oligophosphate or polyphosphate.[51]

Starting with orthophosphate, both directions are anabolic:

Adenosine triphosphate, R00086[52]

ADP + Orthophosphate (Pi) <=> ATP + H2O : EC ATPase/ATP synthase (See the list of human ATPase genes),

Pyrophosphate, R00004[29]

2Orthophosphate <=> Diphosphate + H2O : diphosphate phosphohydrolase; pyrophosphate phosphohydrolase EC 3.6.1.1.

Gp4G

2GTP <=> Diphosphate + P1,P4-Bis(5'-guanosyl) tetraphosphate (Gp4G) : GTP guanylyltransferase EC 2.7.7.45 R00012, no human genes.[53]

Gp4G may play an important role in regulating human DNA apurinic/apyrimidinic endonuclease (APE1) activity in cells.[54] Among all the nucleosides and nucleotides, the dinucleotide compound Gp4G was the only potent inhibitor of both endonuclease and exonuclease activities of APE1.[54] Gp4G is a product of R00012 or originates (R01232) from the low activity of mRNA capping enzymes[55].

D-Glucose 1,6-bisphosphate

2(D-Glucose 1-phosphate) <=> D-Glucose + D-Glucose 1,6-bisphosphate : D-glucose-1-phosphate 6-phosphotransferase EC 2.7.1.41 R00016, no human genes.[56]

Pathways:

  1. Glycolysis / Gluconeogenesis
  2. Starch and sucrose metabolism

Ectonucleoside triphosphate

AMP + 2Orthophosphate(Pi) <=> ATP + 2H2O : ATP diphosphohydrolase (phosphate-forming) EC 3.6.1.5 R00085.[57]

Human GeneID: 953 ENTPD1; ectonucleoside triphosphate diphosphohydrolase 1 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Human GeneID: 956 ENTPD3; ectonucleoside triphosphate diphosphohydrolase 3 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Human GeneID: 377841 ENTPD8; ectonucleoside triphosphate diphosphohydrolase 8 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5].

Adenosine triphosphate

This one phosphate reaction (R00086) has more human genes (87) and more enzymes (66) to bring it about than any other phosphate reaction.

ADP + Orthophosphate (Pi) <=> ATP + H2O : ATP phosphohydrolase, R00086[52]

EC 3.6.1.3

Many of the 3.6.1.3 enzymes are dependent on Ca2+, Mg2+, anions, H+, or DNA.[58]

Human GeneID: 954 ENTPD2; ectonucleoside triphosphate diphosphohydrolase 2 (EC:3.6.1.-); K01509 adenosinetriphosphatase [EC:3.6.1.3]

Human GeneID: 6683 SPAST; spastin (EC:3.6.1.3)

Human GeneID: 29028 ATAD2; ATPase family, AAA domain containing 2 (EC:3.6.1.3),

Cofactors:

  1. Ca2+
  2. Mg2+.

EC 3.6.1.5

Human GeneID: 953 ENTPD1; ectonucleoside triphosphate diphosphohydrolase 1 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Human GeneID: 956 ENTPD3; ectonucleoside triphosphate diphosphohydrolase 3 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

Human GeneID: 377841 ENTPD8; ectonucleoside triphosphate diphosphohydrolase 8 (EC:3.6.1.5); K01510 apyrase [EC:3.6.1.5]

EC 3.6.1.8 no human genes

EC 3.6.1.15

Human GeneID: 84284 C1orf57; chromosome 1 open reading frame 57 (EC:3.6.1.15)

EC 3.6.3.1

One activity of the enzyme is the movement of phospholipids from one membrane face to the other.[59]

Human GeneID: 5205 ATP8B1; ATPase, class I, type 8B, member 1 (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 10079 ATP9A; ATPase, class II, type 9A (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 10396 ATP8A1; ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1 (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

HumanGeneID: 23120 ATP10B; ATPase, class V, type 10B (EC:3.6.3.1)

Human GeneID: 23200 ATP11B; ATPase, class VI, type 11B (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 23250 ATP11A; ATPase, class VI, type 11A (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 51761 ATP8A2; ATPase, aminophospholipid transporter-like, class I, type 8A, member 2 (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 57194 ATP10A; ATPase, class V, type 10A (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 57198 ATP8B2; ATPase, class I, type 8B, member 2 (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 57205 ATP10D; ATPase, class V, type 10D (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 79895 ATP8B4; ATPase, class I, type 8B, member 4 (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 148229 ATP8B3; ATPase, class I, type 8B, member 3 (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 286410 ATP11C; ATPase, class VI, type 11C (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Human GeneID: 374868 ATP9B; ATPase, class II, type 9B (EC:3.6.3.1); K01530 phospholipid-translocating ATPase [EC:3.6.3.1]

Cofactors:

  1. Mg2+.

EC 3.6.3.2 no human genes

ATP + H2O + Mg2+(Out) <=> ADP + Orthophosphate (Pi) + Mg2+(In)

This enzyme is a magnesium-translocating P-type ATPase.[60]

Cofactors:

  1. Mg2+.

EC 3.6.3.3 no human genes

ATP + H2O + Cd2+(In) <=> ADP + Orthophosphate (Pi) + Cd2+(Out)

This enzyme is a cadmium-translocating P-type ATPase.[61]

Cofactors:

  1. Mg2+.

EC 3.6.3.4

ATP + H2O + Cu2+(In) <=> ADP + Orthophosphate (Pi) + Cu2+(Out)

This enzyme is a copper-translocating P-type ATPase.[62]

Human GeneID: 538 ATP7A; ATPase, Cu2+ transporting, alpha polypeptide (EC:3.6.3.4); K01533 Cu2+-exporting ATPase [EC:3.6.3.4]

Human GeneID: 540 ATP7B; ATPase, Cu2+ transporting, beta polypeptide (EC:3.6.3.4); K01533 Cu2+-exporting ATPase [EC:3.6.3.4]

Cofactors:

  1. Mg2+.

EC 3.6.3.5 no human genes

ATP + H2O + Zn2+(In) <=> ADP + Orthophosphate (Pi) + Zn2+(Out)

This enzyme is a zinc-translocating P-type ATPase that can also export Cd2+ and Co2+.[63]

Cofactors:

  1. Mg2+.

EC 3.6.3.6 no human genes

ATP + H2O + H+(In) <=> ADP + Orthophosphate (Pi) + H+(Out)

As a proton-translocating P-type ATPase, this enzyme generates an electrochemical potential gradient of protons across the plasma membrane.[64]

Cofactors:

  1. Mg2+.

EC 3.6.3.7 no human genes

ATP + H2O + Na+(In) <=> ADP + Orthophosphate (Pi) + Na+(Out)

This is a sodium-translocating P-type ATPase.[65]

Cofactors:

  1. Mg2+.

EC 3.6.3.8

ATP + H2O + Ca2+(Cis) <=> ADP + Orthophosphate (Pi) + Ca2+(Trans)

There are three types of this calcium-translocating P-type ATPase: one found in the plasma membrane, one in Saccharomyces cerevisiae, and the third in the sarcoplasmic reticulum, where the first two transport one ion per ATP hydrolyzed and the third one transports two.[66]

Human GeneID: 487 ATP2A1; ATPase, Ca2+ transporting, cardiac muscle, fast twitch 1 (EC:3.6.3.8); K05853 Ca2+ transporting ATPase, sarcoplasmic/endoplasmic reticulum [EC:3.6.3.8]. The sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCAs) are intracellular pumps that translocate calcium (as Ca2+) from the cytosol to the sarcoplasmic reticulum lumen.[67]

Human GeneID: 488 ATP2A2; ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 (EC:3.6.3.8); K05853 Ca2+ transporting ATPase, sarcoplasmic/endoplasmic reticulum [EC:3.6.3.8]

Human GeneID: 489 ATP2A3; ATPase, Ca2+ transporting, ubiquitous (EC:3.6.3.8); K05853 Ca2+ transporting ATPase, sarcoplasmic/endoplasmic reticulum [EC:3.6.3.8]

Human GeneID: 490 ATP2B1; ATPase, Ca2+ transporting, plasma membrane 1 (EC:3.6.3.8); K05850 Ca2+ transporting ATPase, plasma membrane [EC:3.6.3.8]

Human GeneID: 491 ATP2B2; ATPase, Ca2+ transporting, plasma membrane 2 (EC:3.6.3.8); K05850 Ca2+ transporting ATPase, plasma membrane [EC:3.6.3.8]

Human GeneID: 492 ATP2B3; ATPase, Ca2+ transporting, plasma membrane 3 (EC:3.6.3.8); K05850 Ca2+ transporting ATPase, plasma membrane [EC:3.6.3.8]

Human GeneID: 493 ATP2B4; ATPase, Ca2+ transporting, plasma membrane 4 (EC:3.6.3.8); K05850 Ca2+ transporting ATPase, plasma membrane [EC:3.6.3.8]

Human GeneID: 9914 ATP2C2; ATPase, Ca2+ transporting, type 2C, member 2 (EC:3.6.3.8); K01537 Ca2+-transporting ATPase [EC:3.6.3.8]

Human GeneID: 23400 ATP13A2; ATPase type 13A, member 2 (EC:3.6.3.8)

Human GeneID: 27032 ATP2C1; ATPase, Ca2+ transporting, type 2C, member 1 (EC:3.6.3.8); K01537 Ca2+-transporting ATPase [EC:3.6.3.8]

Human GeneID: 57130 ATP13A1; ATPase type 13A, member 1 (EC:3.6.3.8)

Human GeneID: 79572 ATP13A3; ATPase type 13A, member 3 (EC:3.6.3.8)

Human GeneID: 84239 ATP13A4; ATPase type 13A, member 4 (EC:3.6.3.8)

Human GeneID: 344905 ATP13A5; ATPase type 13A, member 5 (EC:3.6.3.8)

Cofactors:

  1. Mg2+.

Pathways:

  1. Calcium signaling pathway.

EC 3.6.3.9

ATP + H2O + Na+(In) + K+(Out) <=> ADP + Orthophosphate (Pi) + Na+(Out) + K+(In)

A sodium/potassium-transporting ATPase from the plasma membrane of animal cells catalyzes the efflux of three Na+ and influx of two K+ per ATP hydrolyzed while generating the plasma membrane electrical potential.[68]

Human GeneID: 476 ATP1A1; ATPase, Na+/K+ transporting, alpha 1 polypeptide (EC:3.6.3.9); K01539 Na+/K+-exchanging ATPase alpha subunit [EC:3.6.3.9]

Human GeneID: 477 ATP1A2; ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide (EC:3.6.3.9); K01539 Na+/K+-exchanging ATPase alpha subunit [EC:3.6.3.9]

Human GeneID: 478 ATP1A3; ATPase, Na+/K+ transporting, alpha 3 polypeptide (EC:3.6.3.9); K01539 Na+/K+-exchanging ATPase alpha subunit [EC:3.6.3.9]

Human GeneID: 480 ATP1A4; ATPase, Na+/K+ transporting, alpha 4 polypeptide (EC:3.6.3.9); K01539 Na+/K+-exchanging ATPase alpha subunit [EC:3.6.3.9]

Human GeneID: 481 ATP1B1; ATPase, Na+/K+ transporting, beta 1 polypeptide ; K01540 Na+/K+-exchanging ATPase beta subunit [EC:3.6.3.9]

Human GeneID: 482 ATP1B2; ATPase, Na+/K+ transporting, beta 2 polypeptide (EC:3.6.1.37); K01540 Na+/K+-exchanging ATPase beta subunit [EC:3.6.3.9]

Human GeneID: 483 ATP1B3; ATPase, Na+/K+ transporting, beta 3 polypeptide (EC:3.6.3.9); K01540 Na+/K+-exchanging ATPase beta subunit [EC:3.6.3.9]

Human GeneID: 23439 ATP1B4; ATPase, Na+/K+ transporting, beta 4 polypeptide ; K01540 Na+/K+-exchanging ATPase beta subunit [EC:3.6.3.9]

Cofactors:

  1. Mg2+.

EC 3.6.3.10

ATP + H2O + H+(In) + K+(Out) <=> ADP + Orthophosphate (Pi) + H+(Out) + K+(In)

The enzyme is a hydrogen/potassium-exchanging ATPase.[69]

Human GeneID: 479 ATP12A; ATPase, H+/K+ transporting, nongastric, alpha polypeptide (EC:3.6.3.10); K01544 non-gastric H+/K+-exchanging ATPase [EC:3.6.3.10]

Human GeneID: 495 ATP4A; ATPase, H+/K+ exchanging, alpha polypeptide (EC:3.6.3.10); K01542 H+/K+-exchanging ATPase alpha polypeptide [EC:3.6.3.10]

Human GeneID: 496 ATP4B; ATPase, H+/K+ exchanging, beta polypeptide ; K01543 H+/K+-exchanging ATPase beta polypeptide [EC:3.6.3.10]

Cofactors:

  1. Mg2+.

EC 3.6.3.11 no genes

ATP + H2O + Cl-(Out) <=> ADP + Orthophosphate (Pi) + Cl-(In)

The enzyme is a chloride-translocating ATPase.[70]

Cofactors:

  1. Mg2+.

EC 3.6.3.12 no human genes

ATP + H2O + K+(Out) <=> ADP + Orthophosphate (Pi) + K+(In)

The bacterial enzyme of di(heterotetrameric) structure is a potassium-transporting ATPase.[71]

Cofactors:

  1. Mg2+.

EC 3.6.3.14

ATP + H2O + H+(In) <=> ADP + Orthophosphate (Pi) + H+(Out),[72]

Human GeneID: 498 ATP5A1; ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle; K02132 F-type H+-transporting ATPase subunit alpha [EC:3.6.3.14]

Human GeneID: 506 ATP5B; ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (EC:3.6.3.14); K02133 F-type H+-transporting ATPase subunit beta [EC:3.6.3.14]

Human GeneID: 509 ATP5C1; ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1 (EC:3.6.1.14); K02136 F-type H+-transporting ATPase subunit gamma [EC:3.6.3.14]

Human GeneID: 513 ATP5D; ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit (EC:3.6.1.14); K02134 F-type H+-transporting ATPase subunit delta [EC:3.6.3.14]

Human GeneID: 514 ATP5E; ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit (EC:3.6.3.14); K02135 F-type H+-transporting ATPase subunit epsilon [EC:3.6.3.14]

Human GeneID: 515 ATP5F1; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit B1; K02127 F-type H+-transporting ATPase subunit b [EC:3.6.3.14]

Human GeneID: 516 ATP5G1; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C1 (subunit 9); K02128 F-type H+-transporting ATPase subunit c [EC:3.6.3.14]

Human GeneID: 517 ATP5G2; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C2 (subunit 9); K02128 F-type H+-transporting ATPase subunit c [EC:3.6.3.14]

Human GeneID: 518 ATP5G3; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C3 (subunit 9); K02128 F-type H+-transporting ATPase subunit c [EC:3.6.3.14]

Human GeneID: 521 ATP5I; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit E (EC:3.6.1.14); K02129 F-type H+-transporting ATPase subunit e [EC:3.6.3.14]

Human GeneID: 522 ATP5J; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 (EC:3.6.1.14); K02131 F-type H+-transporting ATPase subunit 6 [EC:3.6.3.14]

Human GeneID: 523 ATP6V1A; ATPase, H+ transporting, lysosomal 70 kDa, V1 subunit A (EC:3.6.3.14); K02145 V-type H+-transporting ATPase subunit A [EC:3.6.3.14]

Human GeneID: 525 ATP6V1B1; ATPase, H+ transporting, lysosomal 56/58 kDa, V1 subunit B1 (EC:3.6.3.14); K02147 V-type H+-transporting ATPase subunit B [EC:3.6.3.14]

Human GeneID: 526 ATP6V1B2; ATPase, H+ transporting, lysosomal 56/58 kDa, V1 subunit B2 (EC:3.6.3.14); K02147 V-type H+-transporting ATPase subunit B [EC:3.6.3.14]

Human GeneID: 527 ATP6V0C; ATPase, H+ transporting, lysosomal 16 kDa, V0 subunit c (EC:3.6.3.14); K02155 V-type H+-transporting ATPase 16 kDa proteolipid subunit [EC:3.6.3.14]

Human GeneID: 528 ATP6V1C1; ATPase, H+ transporting, lysosomal 42 kDa, V1 subunit C1 (EC:3.6.3.14); K02148 V-type H+-transporting ATPase subunit C [EC:3.6.3.14]

Human GeneID: 529 ATP6V1E1; ATPase, H+ transporting, lysosomal 31 kDa, V1 subunit E1 (EC:3.6.3.14); K02150 V-type H+-transporting ATPase subunit E [EC:3.6.3.14]

Human GeneID: 533 ATP6V0B; ATPase, H+ transporting, lysosomal 21 kDa, V0 subunit b (EC:3.6.3.14); K03661 V-type H+-transporting ATPase 21 kDa proteolipid subunit [EC:3.6.3.14]

Human GeneID: 534 ATP6V1G2; ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G2 (EC:3.6.3.14); K02152 V-type H+-transporting ATPase subunit G [EC:3.6.3.14]

Human GeneID: 535 ATP6V0A1; ATPase, H+ transporting, lysosomal V0 subunit a1 (EC:3.6.3.14); K02154 V-type H+-transporting ATPase subunit I [EC:3.6.3.14]

Human GeneID: 537 ATP6AP1; ATPase, H+ transporting, lysosomal accessory protein 1 (EC:3.6.3.14); K03662 V-type H+-transporting ATPase S1 subunit [EC:3.6.3.14]

Human GeneID: 539 ATP5O; ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (EC:3.6.3.14); K02137 F-type H+-transporting ATPase oligomycin sensitivity conferral protein [EC:3.6.3.14]

Human GeneID: 4508 ATP6; ATP synthase F0 subunit 6 ; K02126 F-type H+-transporting ATPase subunit a [EC:3.6.3.14]

Human GeneID: 4509 ATP8; ATP synthase F0 subunit 8 ; K02125 F-type H+-transporting ATPase subunit 8 [EC:3.6.3.14]

Human GeneID: 8992 ATP6V0E1; ATPase, H+ transporting, lysosomal 9 kDa, V0 subunit e1 (EC:3.6.3.14); K02153 V-type H+-transporting ATPase subunit H [EC:3.6.3.14]

Human GeneID: 9114 ATP6V0D1; ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit d1 (EC:3.6.3.14); K02146 V-type H+-transporting ATPase subunit AC39 [EC:3.6.3.14]

Human GeneID: 9296 ATP6V1F; ATPase, H+ transporting, lysosomal 14 kDa, V1 subunit F (EC:3.6.3.14); K02151 V-type H+-transporting ATPase subunit F [EC:3.6.3.14]

Human GeneID: 9550 ATP6V1G1; ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G1 (EC:3.6.3.14); K02152 V-type H+-transporting ATPase subunit G [EC:3.6.3.14]

Human GeneID: 9551 ATP5J2; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F2 (EC:3.6.1.14); K02130 F-type H+-transporting ATPase subunit f [EC:3.6.3.14]

Human GeneID: 10312 TCIRG1; T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3; K02154 V-type H+-transporting ATPase subunit I [EC:3.6.3.14]

Human GeneID: 10476 ATP5H; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit d (EC:3.6.1.14); K02138 F-type H+-transporting ATPase subunit d [EC:3.6.3.14]

Human GeneID: 10632 ATP5L; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G (EC:3.6.1.14); K02140 F-type H+-transporting ATPase subunit g [EC:3.6.3.14]

Human GeneID: 23545 ATP6V0A2; ATPase, H+ transporting, lysosomal V0 subunit a2 ; K02154 V-type H+-transporting ATPase subunit I [EC:3.6.3.14]

Human GeneID: 50617 ATP6V0A4; ATPase, H+ transporting, lysosomal V0 subunit a4 (EC:3.6.3.14); K02154 V-type H+-transporting ATPase subunit I [EC:3.6.3.14]

Human GeneID: 51382 ATP6V1D; ATPase, H+ transporting, lysosomal 34 kDa, V1 subunit D (EC:3.6.3.14); K02149 V-type H+-transporting ATPase subunit D [EC:3.6.3.14]

Human GeneID: 51606 ATP6V1H; ATPase, H+ transporting, lysosomal 50/57 kDa, V1 subunit H (EC:3.6.3.14); K02144 V-type H+-transporting ATPase 54 kD subunit [EC:3.6.3.14]

Human GeneID: 90423 ATP6V1E2; ATPase, H+ transporting, lysosomal 31 kDa, V1 subunit E2 ; K02150 V-type H+-transporting ATPase subunit E [EC:3.6.3.14]

Human GeneID: 127124 ATP6V1G3; ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G3 (EC:3.6.3.14); K02152 V-type H+-transporting ATPase subunit G [EC:3.6.3.14]

Human GeneID: 155066 ATP6V0E2; ATPase, H+ transporting V0 subunit e2 ; K02153 V-type H+-transporting ATPase subunit H [EC:3.6.3.14]

Human GeneID: 245972 ATP6V0D2; ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit d2 ; K02146 V-type H+-transporting ATPase subunit AC39 [EC:3.6.3.14]

Human GeneID: 245973 ATP6V1C2; ATPase, H+ transporting, lysosomal 42 kDa, V1 subunit C2 (EC:3.6.3.14); K02148 V-type H+-transporting ATPase subunit C [EC:3.6.3.14]

Human GeneID: 390424 similar to hCG1639781 ; K02128 F-type H+-transporting ATPase subunit c [EC:3.6.3.14]

Human GeneID: 100133737 similar to hCG1809973 ; K02138 F-type H+-transporting ATPase subunit d [EC:3.6.3.14]

EC 3.6.3.15 no human genes

ATP + H2O + Na+(In) <=> ADP + Orthophosphate (Pi) + Na+(Out)

EC 3.6.3.16

ATP + H2O + arsenite(In) <=> ADP + Orthophosphate (Pi) + arsenite(Out)

A bacterial multisubunit non-phosphorylated ATPase is involved in the export of arsenite and antimonite anions.[73]

Human GeneID: 439 ASNA1; arsA arsenite transporter, ATP-binding, homolog 1 (bacterial) (EC:3.6.3.16); K01551 arsenite-transporting ATPase [EC:3.6.3.16]

EC 3.6.3.17 no human genes

ATP + H2O + monosaccharide(Out) <=> ADP + Orthophosphate (Pi) + monosaccharide(In)

This family of bacterial monosaccharide-transporting ATPase enzymes imports ribose, xylose, arabinose, galactose and methylgalactoside.[74]

EC 3.6.3.18 no human genes

ATP + H2O + oligosaccharide(Out) <=> ADP + Orthophosphate (Pi) + oligosaccharide(In)

This bacterial oligosaccharide-transporting ATPase imports lactose, melibiose and raffinose.[75]

EC 3.6.3.19 no human genes

ATP + H2O + maltose(Out) <=> ADP + Orthophosphate (Pi) + maltose(In)

These bacterial maltose-transporting ATPases that import maltose and maltose oligosaccharides.[76]

EC 3.6.3.20 no human genes

ATP + H2O + glycerol-3-phosphate(Out) <=> ADP + Orthophosphate (Pi) + glycerol-3-phosphate(In),[77]

EC 3.6.3.21 no human genes

ATP + H2O + polar amino acid(Out) <=> ADP + Orthophosphate (Pi) + polar amino acid(In)

These bacterial polar-amino-acid-transporting ATPases import His, Arg, Lys, Glu, Gln, Asp, ornithine, octopine and nopaline.[78]

EC 3.6.3.22 no human genes

ATP + H2O + nonpolar amino acid(Out) <=> ADP + Orthophosphate (Pi) + nonpolar amino acid(In)

The bacterial nonpolar-amino-acid-transporting ATPase imports Leu, Ile and Val.[79]

EC 3.6.3.23 no human genes

ATP + H2O + oligopeptide(Out) <=> ADP + Orthophosphate (Pi) + oligopeptide(In), oligopeptide-transporting ATPase.[80]

EC 3.6.3.24 no human genes

EC 3.6.3.25 no human genes

EC 3.6.3.26 no human genes

EC 3.6.3.27 no human genes

EC 3.6.3.28 no human genes

EC 3.6.3.29 no human genes

EC 3.6.3.30 no human genes

EC 3.6.3.31 no human genes

EC 3.6.3.32 no human genes

EC 3.6.3.33 no human genes

EC 3.6.3.34 no human genes

EC 3.6.3.35 no human genes

EC 3.6.3.36 no human genes

EC 3.6.3.37 no genes

EC 3.6.3.38 no human genes

EC 3.6.3.39 no genes

EC 3.6.3.40 no human genes

EC 3.6.3.41 no human genes

EC 3.6.3.42 no human genes

EC 3.6.3.43 no human genes

EC 3.6.3.44

Human GeneID: 5243 ABCB1; ATP-binding cassette, sub-family B (MDR/TAP), member 1 (EC:3.6.3.44); K05658 ATP-binding cassette, subfamily B (MDR/TAP), member 1

Human GeneID: 5244 ABCB4; ATP-binding cassette, sub-family B (MDR/TAP), member 4 (EC:3.6.3.44); K05659 ATP-binding cassette, subfamily B (MDR/TAP), member 4

EC 3.6.3.46 no human genes

EC 3.6.3.47 no genes

EC 3.6.3.48 no genes

EC 3.6.3.49

Human GeneID: 1080 CFTR; cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7) (EC:3.6.3.49); K05031 ATP-binding cassette, subfamily C (CFTR/MRP), member 7

EC 3.6.3.50 no human genes

EC 3.6.3.51 no human genes

EC 3.6.3.52 no genes

EC 3.6.3.53 no genes

EC 3.6.4.1

Human GeneID: 79784 MYH14; myosin, heavy chain 14 (EC:3.6.4.1); K10352 myosin heavy chain

EC 3.6.4.2 no human genes

EC 3.6.4.3

Human GeneID: 11104 KATNA1; katanin p60 (ATPase-containing) subunit A 1 (EC:3.6.4.3); K07767 microtubule-severing ATPase [EC:3.6.4.3]

Human GeneID: 83473 KATNAL2; katanin p60 subunit A-like 2 (EC:3.6.4.3)

Human GeneID: 84056 KATNAL1; katanin p60 subunit A-like 1 (EC:3.6.4.3); K07767 microtubule-severing ATPase [EC:3.6.4.3]

EC 3.6.4.4

Human GeneID: 9371 KIF3B; kinesin family member 3B (EC:3.6.4.4); K10394 kinesin family member 3/17

EC 3.6.4.5 no human genes

EC 3.6.4.6

Human GeneID: 4905 NSF; N-ethylmaleimide-sensitive factor (EC:3.6.4.6); K06027 vesicle-fusing ATPase [EC:3.6.4.6]

EC 3.6.4.7 no genes

EC 3.6.4.8 no human genes

EC 3.6.4.9 no human genes

EC 3.6.4.10 no human genes

EC 3.6.4.11 no genes

Diphosphate-forming

AMP + Diphosphate <=> ATP + H2O : ATP diphosphohydrolase (diphosphate-forming) EC 3.6.1.8 R00087, no human genes.[81]

Cyclic adenosine monophosphate

Cyclic adenosine monophosphate (cAMP, cyclic AMP or 3'-5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is derived from adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway.

3',5'-Cyclic AMP (cAMP) + Diphosphate <=> ATP : ATP diphosphate-lyase (cyclizing, ATP pyrophosphate-lyase (cyclizing); 3',5'-cyclic-AMP-forming) EC 4.6.1.1 R00089.[82]

Human GeneID: 107 ADCY1; adenylate cyclase 1 (brain) (EC:4.6.1.1); K08041 adenylate cyclase 1 [EC:4.6.1.1]

Human GeneID: 108 ADCY2; adenylate cyclase 2 (brain) (EC:4.6.1.1); K08042 adenylate cyclase 2 [EC:4.6.1.1]

Human GeneID: 109 ADCY3; adenylate cyclase 3 (EC:4.6.1.1); K08043 adenylate cyclase 3 [EC:4.6.1.1]

Human GeneID: 111 ADCY5; adenylate cyclase 5 (EC:4.6.1.1); K08045 adenylate cyclase 5 [EC:4.6.1.1]

Human GeneID: 112 ADCY6; adenylate cyclase 6 (EC:4.6.1.1); K08046 adenylate cyclase 6 [EC:4.6.1.1]

Human GeneID: 113 ADCY7; adenylate cyclase 7 (EC:4.6.1.1); K08047 adenylate cyclase 7 [EC:4.6.1.1]

Human GeneID: 114 ADCY8; adenylate cyclase 8 (brain) (EC:4.6.1.1); K08048 adenylate cyclase 8 [EC:4.6.1.1]

Human GeneID: 115 ADCY9; adenylate cyclase 9 (EC:4.6.1.1); K08049 adenylate cyclase 9 [EC:4.6.1.1]

Human GeneID: 55811 ADCY10; adenylate cyclase 10 (soluble) (EC:4.6.1.1); K11265 adenylate cyclase 10 [EC:4.6.1.1]

Human GeneID: 196883 ADCY4; adenylate cyclase 4 (EC:4.6.1.1); K08044 adenylate cyclase 4 [EC:4.6.1.1]

Nicotinamide adenine dinucleotide phosphate

ATP + NAD+ <=> ADP + NADP+ : NAD+ 2'-phosphotransferase EC 2.7.1.23 R00104.

Human GeneID: 65220 NADK; NAD kinase (EC:2.7.1.23); K00858 NAD+ kinase [EC:2.7.1.23]

ATP + NADH <=> ADP + NADPH : NADH 2'-phosphotransferase EC 2.7.1.86 R00105, no human genes.

P1,P4-Bis(5'-adenosyl) tetraphosphate

2ADP <=> P1,P4-Bis(5'-adenosyl) tetraphosphate + H2O : P1,P4-bis(5'-adenosyl)-tetraphosphate nucleotidebisphosphohydrolase EC 3.6.1.41 R00125, no human genes.

ADP + ATP <=> Orthophosphate (Pi) + P1,P4-Bis(5'-adenosyl) tetraphosphate : ATP adenylyltransferase EC 2.7.7.53 R00126, no human genes.

Adenosine tetraphosphate (Ap4)

ATP + Orthophosphate (Pi) <=> Adenosine tetraphosphate (Ap4) + H2O : Adenosine-tetraphosphate phosphohydrolase EC 3.6.1.14 R00128.[83]

Human GeneID: 509 ATP5C1; ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1 (EC:3.6.1.14); K02136 F-type H+-transporting ATPase subunit gamma [EC:3.6.3.14]

Human GeneID: 513 ATP5D; ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit (EC:3.6.1.14); K02134 F-type H+-transporting ATPase subunit delta [EC:3.6.3.14]

Human GeneID: 521 ATP5I; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit E (EC:3.6.1.14); K02129 F-type H+-transporting ATPase subunit e [EC:3.6.3.14]

Human GeneID: 522 ATP5J; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 (EC:3.6.1.14); K02131 F-type H+-transporting ATPase subunit 6 [EC:3.6.3.14]

Human GeneID: 9551 ATP5J2; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F2 (EC:3.6.1.14); K02130 F-type H+-transporting ATPase subunit f [EC:3.6.3.14]

Human GeneID: 10476 ATP5H; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit d (EC:3.6.1.14); K02138 F-type H+-transporting ATPase subunit d [EC:3.6.3.14]

Human GeneID: 10632 ATP5L; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G (EC:3.6.1.14); K02140 F-type H+-transporting ATPase subunit g [EC:3.6.3.14]

Human GeneID: 27109 ATP5S; ATP synthase, H+ transporting, mitochondrial F0 complex, subunit s (factor B) (EC:3.6.1.14); K07554 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit s

P1,P4-Bis(5'-guanosyl) tetraphosphate

GTP + GMP <=> P1,P4-Bis(5'-guanosyl) tetraphosphate (Gp4G) + H2O : bis(5'-nucleosidyl)-tetraphosphatase EC 3.6.1.17 R01232,[84]

Human GeneID: 318 NUDT2; nudix (nucleoside diphosphate linked moiety X)-type motif 2 (EC:3.6.1.17); K01518 bis(5'-nucleosidyl)-tetraphosphatase [EC:3.6.1.17].

Phosphate substitution

Although usually characterized by an element being displaced out of a compound by a more reactive element, it can also refer to phosphate transfer benefited by the presence of a catalyst.

Inorganic substitution in a phosphate

ATP + H2O <=> ITP + NH3 : ATP aminohydrolase EC 3.5.4.18 R00088, no genes.

ADP + H2O <=> IDP + NH3 : ADP aminohydrolase EC 3.5.4.7 R00123, no genes.

Phosphate transfer between phosphates

ATP + ADP <=> ADP + ATP : ADP phosphatransferase EC 2.7.4.6 R00124.

Human GeneID: 4830 NME1; non-metastatic cells 1, protein (NM23A) expressed in (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Human GeneID: 4831 NME2; non-metastatic cells 2, protein (NM23B) expressed in (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Human GeneID: 4832 NME3; non-metastatic cells 3, protein expressed in (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Human GeneID: 4833 NME4; non-metastatic cells 4, protein expressed in (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Human GeneID: 8382 NME5; non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Human GeneID: 10201 NME6; non-metastatic cells 6, protein expressed in (nucleoside-diphosphate kinase) (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Human GeneID: 29922 NME7; non-metastatic cells 7, protein expressed in (nucleoside-diphosphate kinase) (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6].

Human GeneID: 654364 NME1-NME2; NME1-NME2 readthrough transcript (EC:2.7.4.6); K00940 nucleoside-diphosphate kinase [EC:2.7.4.6]

Pathways:

  1. Metabolic pathways
  2. Purine metabolism.

ATP + GDP <=> ADP + GTP : GDP phosphotransferase EC 2.7.4.6 R00330, R00124 with GDP instead of ADP.

Pathways:

  1. Metabolic pathways
  2. Purine metabolism.

Phosphate metathesis

This is a double displacement reaction in which two phosphate compounds exchange ions or bonds to form different phosphate compounds.

ATP + AMP <=> 2 ADP : AMP phosphotransferase EC 2.7.4.3 R00127.[85]

Human GeneID: 203 AK1; adenylate kinase 1 (EC:2.7.4.3); K00939 adenylate kinase [EC:2.7.4.3]

Human GeneID: 204 AK2; adenylate kinase 2 (EC:2.7.4.3); K00939 adenylate kinase [EC:2.7.4.3]

Human GeneID: 205 AK3L1; adenylate kinase 3-like 1 (EC:2.7.4.3); K00939 adenylate kinase [EC:2.7.4.3]

Human GeneID: 6880 TAF9; TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa (EC:2.7.4.3); K03133 transcription initiation factor TFIID subunit D7

Human GeneID: 26289 AK5; adenylate kinase 5 (EC:2.7.4.3); K00939 adenylate kinase [EC:2.7.4.3]

Human GeneID: 122481 AK7; adenylate kinase 7 (EC:2.7.4.3); K00939 adenylate kinase [EC:2.7.4.3]

Human GeneID: 158067 C9orf98; chromosome 9 open reading frame 98 (EC:2.7.4.3)

Phosphate acid-base reactions

Acid-base reactions between a phosphate containing acid and a phosphate base may have different definitions depending upon the acid-base concept employed.

Phosphate combustion

The term combustion is usually used for only large-scale oxidation of whole molecules, i.e. a controlled oxidation of a single functional group is not combustion. Combustion is a kind of redox reaction in which any combustible substance combines with an oxidizing element, usually oxygen, to generate heat and form oxidized products.

Phosphate disproportionation

One phosphate reactant forms two distinct phosphate products varying in oxidation state.

Phosphorylation

Def. "the process of transferring a phosphate group from a donor to an acceptor; often catalysed by enzymes"[86] is called phosphorylation.

Phosphorylase a

4ATP + 2(Phosphorylase b) <=> 4ADP + (Phosphorylase a) : [glycogen phosphorylase] phosphotransferase EC 2.7.11.19 R00076.[87]

Human GeneID: 801

CALM1; calmodulin 1 (phosphorylase kinase, delta) (EC:2.7.11.19); K02183 calmodulin,

Human GeneID: 5255

PHKA1; phosphorylase kinase, alpha 1 (muscle) (EC:2.7.11.19); K07190 phosphorylase kinase alpha/beta subunit,

Human GeneID: 5256

PHKA2; phosphorylase kinase, alpha 2 (liver) (EC:2.7.11.19); K07190 phosphorylase kinase alpha/beta subunit,

Human GeneID: 5260

PHKG1; phosphorylase kinase, gamma 1 (muscle) (EC:2.7.11.19); K00871 phosphorylase kinase gamma subunit [EC:2.7.11.19],

Human GeneID: 5261

PHKG2; phosphorylase kinase, gamma 2 (testis) (EC:2.7.11.19); K00871 phosphorylase kinase gamma subunit [EC:2.7.11.19].

Enzyme activators:

  1. Ca2+
  2. calmodulin

2(Phosphorylase b) + 4Orthophosphate (Pi) <=> Phosphorylase a + 4H2O : [glycogen phosphorylase] phosphohydrolase EC 3.1.3.17 R00077, no genes.[88]

Nicotinamide adenine dinucleotide

Nicotinamide + ADP-ribose <=> NAD+ + H2O : NAD+ glycohydrolase R00102.[89]

EC 3.2.2.5

Human GeneID: 683

BST1; bone marrow stromal cell antigen 1 (EC:3.2.2.5); K01242 NAD+ nucleosidase [EC:3.2.2.5],

Human GeneID: 952

CD38; CD38 molecule (EC:3.2.2.5); K01242 NAD+ nucleosidase [EC:3.2.2.5],

EC 3.2.2.6 no genes.

AMP + Nicotinamide D-ribonucleotide <=> NAD+ + H2O : NAD+ phosphohydrolase R00103.[90]

EC 3.6.1.9

Human GeneID: 5169

ENPP3; ectonucleotide pyrophosphatase/phosphodiesterase 3 (EC:3.1.4.1 3.6.1.9); K01113 phosphodiesterase/alkaline phosphatase D [EC:3.1.4.1]; K01513 nucleotide pyrophosphatase [EC:3.6.1.9]

Human GeneID: 5167

ENPP1; ectonucleotide pyrophosphatase/phosphodiesterase 1 (EC:3.1.4.1 3.6.1.9); K01113 phosphodiesterase/alkaline phosphatase D [EC:3.1.4.1]; K01513 nucleotide pyrophosphatase [EC:3.6.1.9]

EC 3.6.1.22

Human GeneID: 83594

NUDT12; nudix (nucleoside diphosphate linked moiety X)-type motif 12 (EC:3.6.1.22); K03426 NAD+ diphosphatase [EC:3.6.1.22]

ATP + Nicotinamide D-ribonucleotide <=> Diphosphate + Nicotinamide adenine dinucleotide (NAD+) : nicotinamide-nucleotide adenylyltransferase EC 2.7.7.1 R00137.[91]

Human GeneID: 23057

NMNAT2; nicotinamide nucleotide adenylyltransferase 2 (EC:2.7.7.1 2.7.7.18); K00952 nicotinamide-nucleotide adenylyltransferase [EC:2.7.7.1]

Human GeneID: 64802

NMNAT1; nicotinamide nucleotide adenylyltransferase 1 (EC:2.7.7.1 2.7.7.18); K00952 nicotinamide-nucleotide adenylyltransferase [EC:2.7.7.1]

Human GeneID: 349565

NMNAT3; nicotinamide nucleotide adenylyltransferase 3 (EC:2.7.7.1 2.7.7.18); K00952 nicotinamide-nucleotide adenylyltransferase [EC:2.7.7.1]

Nicotinate nucleotide can also act as an electron acceptor in place of Nicotinamide D-ribonucleotide.[92]

and

ATP + Nicotinate ribonucleotide <=> Diphosphate + Deamido-NAD+ EC 2.7.7.18 same human genes as EC 2.7.7.1.

Nicotinamide adenine dinucleotide phosphate

Nicotinamide + ADPribose 2'-phosphate <=> NADP+ + H2O : NADP+ glycohydrolase R00119.[93]

EC 3.2.2.5

Human GeneID: 683

BST1; bone marrow stromal cell antigen 1 (EC:3.2.2.5); K01242 NAD+ nucleosidase [EC:3.2.2.5]

Human GeneID: 952

CD38; CD38 molecule (EC:3.2.2.5); K01242 NAD+ nucleosidase [EC:3.2.2.5]

EC 3.2.2.6 no genes

Coenzyme A

Notation: let Coenzyme A be represented by CoA

ATP + Dephospho-CoA <=> ADP + CoA : dephospho-CoA 3'-phosphotransferase EC 2.7.1.24 R00130,[94]

Human GeneID: 80347

COASY; Coenzyme A synthase (EC:2.7.7.3, 2.7.1.24); K00859 dephospho-CoA kinase [EC:2.7.1.24]; K02201 pantetheine-phosphate adenylyltransferase [EC:2.7.7.3].

2'-Deoxy-5-hydroxymethylcytidine-5'-triphosphate

2'-Deoxy-5-hydroxymethylcytidine-5'-diphosphate + ATP <=> 2'-Deoxy-5-hydroxymethylcytidine-5'-triphosphate + ADP : 2'-deoxy-5-hydroxymethylcytidine-5'-diphosphate phosphotransferase EC 2.7.4.6 R00139, same human genes as R00124.

Hydroxymethylcytidine-5'-diphosphate

5-Hydroxymethyldeoxycytidylate + ATP <=> Hydroxymethylcytidine-5'-diphosphate + ADP : 5-hydroxymethyldeoxycytidylate phosphotransferase EC 2.7.4.12 R00140, no human genes.

Phosphoramidate

ATP + NH3 <=> ADP + Phosphoramidate : ammonia phosphotransferase EC 2.7.3.8 R00141, no genes.

Hypotheses

  1. Phosphate reactions may have been the initiator of life.

See also

References

  1. Emperorbma (14 November 2003). "phosphorus". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 31 August 2019.
  2. SemperBlotto (19 November 2005). "phosphorus". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 31 August 2019.
  3. 3.0 3.1 "Allotropes of phosphorus". San Francisco, California: Wikimedia Foundation, Inc. 20 March 2013. Retrieved 2013-03-20.
  4. 4.0 4.1 SemperBlotto (19 May 2005). "phosphate". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-08-23.
  5. SemperBlotto (19 May 2005). "phosphoric acid". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-08-23.
  6. 6.0 6.1 "Phosphoric acid". San Francisco, California: Wikimedia Foundation, Inc. August 19, 2013. Retrieved 2013-08-22.
  7. SemperBlotto (28 June 2005). "pyrophosphoric acid". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-08-23.
  8. E. Wiberg, N. Wiberg, and A. F. Holleman (2001). Inorganic Chemistry. Academic Press. p. 1884. |access-date= requires |url= (help)
  9. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook. Last update: 2014-02-24; version: 2.3.3. DOI of this term: https://doi.org/10.1351/goldbook.C01033.
  10. SemperBlotto (28 June 2005). "pyrophosphate". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-08-23.
  11. 11.0 11.1 SemperBlotto (5 March 2006). "polyphosphate". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-04-19.
  12. SemperBlotto (5 April 2006). "pnictogen". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-02-22.
  13. 13.0 13.1 Blatt, Harvey and Robert J. Tracy, Petrology, Freeman, 1996, 2nd ed. pp. 345-349 ISBN 0-7167-2438-3
  14. Prothero, Donald R.2004,1996. Sedimentary Geology An Intro to Sedimentary Rocks and Straitagraphy Second Edition. W.H. Freeman and Company New York. 265-269
  15. "GenomeNet DBGET Reaction R00129".
  16. Template:GoldBookRef
  17. SemperBlotto (19 April 2018). "oligophosphate". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 26 May 2019.
  18. SemperBlotto (13 June 2006). "phosphatase". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-08-23.
  19. SemperBlotto (19 April 2018). "endopolyphosphatase". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 31 August 2019.
  20. "KEGG REACTION: R00001".
  21. 21.0 21.1 21.2 21.3 21.4 21.5 21.6 Kulaev IS, Vagabov VM, Kulakovskaya TV (2004). The biochemistry of inorganic polyphosphates second edition. The Atrium, Southern Gate Chichester, West Sussex, England: John Wiley & Sons, Ltd. p. 273. ISBN 470 85810 9 Check |isbn= value: length (help).
  22. 22.0 22.1 Lorenz B, Leuck J, Kohl D, Müller WEG, Schröder HC (1997). J Acq Immune Defic Synd Human Retrivir. 14: 110–8. Missing or empty |title= (help)
  23. 23.0 23.1 Schröder HC, Kurz L, Muller WEG, Lorenz B (March 2000). "Polyphosphate in bone" (PDF). Biochemistry (Moscow). 65 (3): 296–303.
  24. "KEGG ENZYME: 3.6.1.10".
  25. "GenomeNet DBGET Reaction R03042".
  26. "Entrez Gene PRUNE prune homolog (Drosophila) [Homo sapiens]".
  27. "KEGG Homo sapiens (human): 58497".
  28. "GenomeNet DBGET Reaction R00138".
  29. 29.0 29.1 "KEGG REACTION: R00004".
  30. 30.0 30.1 "NiceZyme View of ENZYME: EC 3.6.1.1".
  31. Huebner PWA, Milburn RM (May 1980). "Hydrolysis of pyrophosphate to orthophosphate promoted by cobalt(III). Evidence for the role of polynuclear species". Inorg Chem. 19 (5): 1267–72. doi:10.1021/ic50207a032.
  32. "GenomeNet DBGET Reaction R00002".
  33. 33.0 33.1 "KEGG ENZYME: 1.18.6.1".
  34. Madden MS, Krezel AM, Allen RM, Ludden PW, Shah VK (July 1992). "Plausible structure of the iron-molybdenum cofactor of nitrogenase". Proc Natl Acad Sci USA. 89 (14): 6487–91. doi:10.1073/pnas.89.14.6487. PMC 49526. PMID 1631147.
  35. Liang J, Burris RH (1988). "Hydrogen burst associated with nitrogenase-catalyzed reactions". Proc Natl Acad Sci USA. 85 (24): 9446–50. doi:10.1073/pnas.85.24.9446. PMC 282769. PMID 3200830.
  36. Ljones T, Burris RH (1978). "Nitrogenase: the reaction between iron protein and bathophenanthrolinedisulfonate as a probe for interactions with MgATP". Biochem. 17: 1866–72. doi:10.1021/bi00603a010.
  37. "GenomeNet DBGET Reaction R00067".
  38. "GenomeNet DBGET Reaction R02802".
  39. "GenomeNet DBGET Reaction R04782".
  40. "GenomeNet DBGET Reaction R00153".
  41. "GenomeNet DBGET Reaction R05185".
  42. "GenomeNet DBGET Reaction R05496".
  43. 43.0 43.1 Rivera-Ortiz JM, Burris RH (1975). "Interactions among substrates and inhibitors of nitrogenase". J Bacteriol. 123 (2): 537–45. PMC 235759. PMID 1150625.
  44. 44.0 44.1 Schrauzer GN (2003). "Nonenzymatic Simulation of Nitrogenase Reactions and the Mechanism of Biological Nitrogen Fixation". Angewandte Chemie International Ed English. 14 (8): 514–22. doi:10.1002/anie.197505141. PMID 810048.
  45. "GenomeNet DBGET Reaction R05186".
  46. "KEGG ENZYME 1.19.6.1".
  47. "KEGG REACTION: R00024".
  48. "KEGG REACTION: R00118".
  49. "KEGG REACTION: R00122".
  50. de Bolster MWG (1997). Glossary of Terms Used in Bioinorganic Chemistry: Anabolism. International Union of Pure and Applied Chemistry. Retrieved 2007-10-30.
  51. 51.0 51.1 "KEGG PATHWAY: Oxidative phosphorylation - Reference pathway (Enzyme)".
  52. 52.0 52.1 "KEGG REACTION: R00086".
  53. "KEGG REACTION: R00012".
  54. 54.0 54.1 Chou KM, Cheng YC (May 2003). "The Exonuclease Activity of Human Apurinic/Apyrimidinic Endonuclease (APE1) BIOCHEMICAL PROPERTIES AND INHIBITION BY THE NATURAL DINUCLEOTIDE Gp4G". J Biol Chem. 278 (20): 18289–96. doi:10.1074/jbc.M212143200. PMID 12624104.
  55. Smith RE, Furuichi Y (1982). "A unique class of compound, guanosine-nucleoside tetraphosphate G(5')pppp(5')N, synthesized during the in vitro transcription of cytoplasmic polyhedrosis virus of Bombyx mori. Structural determination and mechanism of formation". J Biol Chem. 257 (1): 485–94. PMID 7031064.
  56. "KEGG REACTION: R00016".
  57. "KEGG REACTION: R00085".
  58. "NiceZyme View of ENZYME: EC 3.6.1.3".
  59. "NiceZyme View of ENZYME: EC 3.6.3.1".
  60. "NiceZyme View of ENZYME: EC 3.6.3.2".
  61. "NiceZyme View of ENZYME: EC 3.6.3.3".
  62. "NiceZyme View of ENZYME: EC 3.6.3.4".
  63. "NiceZyme View of ENZYME: EC 3.6.3.5".
  64. "NiceZyme View of ENZYME: EC 3.6.3.6".
  65. "NiceZyme View of ENZYME: EC 3.6.3.7".
  66. "NiceZyme View of ENZYME: EC 3.6.3.8".
  67. "ATP2A1 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 [ Homo sapiens ]".
  68. "NiceZyme View of ENZYME: EC 3.6.3.9".
  69. "NiceZyme View of ENZYME: EC 3.6.3.10".
  70. "NiceZyme View of ENZYME: EC 3.6.3.11".
  71. "NiceZyme View of ENZYME: EC 3.6.3.12".
  72. "NiceZyme View of ENZYME: EC 3.6.3.14".
  73. "NiceZyme View of ENZYME: EC 3.6.3.16".
  74. "NiceZyme View of ENZYME: EC 3.6.3.17".
  75. "NiceZyme View of ENZYME: EC 3.6.3.18".
  76. "NiceZyme View of ENZYME: EC 3.6.3.19".
  77. "NiceZyme View of ENZYME: EC 3.6.3.20".
  78. "NiceZyme View of ENZYME: EC 3.6.3.21".
  79. "NiceZyme View of ENZYME: EC 3.6.3.22".
  80. "NiceZyme View of ENZYME: EC 3.6.3.23".
  81. "KEGG REACTION: R00087".
  82. "KEGG REACTION: R00089".
  83. "KEGG REACTION: R00128".
  84. "KEGG REACTION: R01232".
  85. "KEGG REACTION: R00127".
  86. SemperBlotto (22 July 2016). "phosphorylation". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2014-12-10.
  87. "KEGG REACTION: R00076".
  88. "KEGG REACTION: R00077".
  89. "KEGG REACTION: R00102".
  90. "KEGG REACTION: R00103".
  91. "KEGG REACTION: R00137".
  92. "ExPASy Proteomics Server NiceZyme View of ENZYME: EC 2.7.7.1".
  93. "KEGG REACTION: R00119".
  94. "KEGG REACTION: R00130".

External links

Template:Sisterlinks