60S acidic ribosomal protein P2 is a protein that in humans is encoded by the RPLP2gene.[1][2]
Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal phosphoprotein that is a component of the 60S subunit. The protein, which is a functional equivalent of the Escherichia coliL7/L12 ribosomal protein, belongs to the L12P family of ribosomal proteins. It plays an important role in the elongation step of protein synthesis. Unlike most ribosomal proteins, which are basic, the encoded protein is acidic. Its C-terminal end is nearly identical to the C-terminal ends of the ribosomal phosphoproteins P0 and P1. The P2 protein can interact with P0 and P1 to form a pentameric complex consisting of P1 and P2 dimers, and a P0 monomer. The protein is located in the cytoplasm. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.[2]
↑Tchórzewski, M; Boldyreff B; Issinger O G; Grankowski N (July 2000). "Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system". Int. J. Biochem. Cell Biol. England. 32 (7): 737–746. doi:10.1016/S1357-2725(00)00017-0. PMID10856704.
Further reading
Wool IG; Chan YL; Glück A (1996). "Structure and evolution of mammalian ribosomal proteins". Biochem. Cell Biol. 73 (11–12): 933–947. doi:10.1139/o95-101. PMID8722009.
Hochstrasser DF, Frutiger S, Paquet N, et al. (1993). "Human liver protein map: a reference database established by microsequencing and gel comparison". Electrophoresis. 13 (12): 992–1001. doi:10.1002/elps.11501301201. PMID1286669.
Matoba R, Okubo K, Hori N, et al. (1994). "The addition of 5'-coding information to a 3'-directed cDNA library improves analysis of gene expression". Gene. 146 (2): 199–207. doi:10.1016/0378-1119(94)90293-3. PMID8076819.
Tchórzewski M, Boldyreff B, Issinger O, Grankowski N (2000). "Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system". Int. J. Biochem. Cell Biol. 32 (7): 737–746. doi:10.1016/S1357-2725(00)00017-0. PMID10856704.
Uechi T, Tanaka T, Kenmochi N (2001). "A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders". Genomics. 72 (3): 223–230. doi:10.1006/geno.2000.6470. PMID11401437.
Tchórzewski M, Krokowski D, Rzeski W, et al. (2003). "The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins". Int. J. Biochem. Cell Biol. 35 (2): 203–211. doi:10.1016/S1357-2725(02)00133-4. PMID12479870.
Shu H, Chen S, Bi Q, et al. (2004). "Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line". Mol. Cell. Proteomics. 3 (3): 279–286. doi:10.1074/mcp.D300003-MCP200. PMID14729942.
Gardner-Thorpe J, Ito H, Ashley SW, Whang EE (2004). "Ribosomal protein P2: a potential molecular target for antisense therapy of human malignancies". Anticancer Res. 23 (6C): 4549–60. PMID14981896.
Giorgianni F, Beranova-Giorgianni S, Desiderio DM (2004). "Identification and characterization of phosphorylated proteins in the human pituitary". Proteomics. 4 (3): 587–598. doi:10.1002/pmic.200300584. PMID14997482.
Brandenberger R, Wei H, Zhang S, et al. (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nat. Biotechnol. 22 (6): 707–716. doi:10.1038/nbt971. PMID15146197.