Dual specificity protein phosphatase CDC14B is an enzyme that in humans is encoded by the CDC14Bgene.[1][2]
The protein encoded by this gene is a member of the dual specificity protein tyrosine phosphatase family. This protein is highly similar to Saccharomyces cerevisiae Cdc14, a protein tyrosine phosphatase involved in the exit of cell mitosis and initiation of DNA replication, which suggests the role in cell cycle control. Specifically, it is thought to fulfil this role by bundling and stabilising microtubules. This protein has been shown to interact with and dephosphorylates tumor suppressor protein p53, and is thought to regulate the function of p53. Alternative splicing of this gene results in 3 transcript variants encoding distinct isoforms.[2]
CDC14B has been shown to interact with p53.[3] However, this interaction has not been reported in other studies.
References
↑Li L, Ernsting BR, Wishart MJ, Lohse DL, Dixon JE (December 1997). "A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast". J Biol Chem. 272 (47): 29403–29406. doi:10.1074/jbc.272.47.29403. PMID9367992.
↑Li, L; Ljungman M; Dixon J E (January 2000). "The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53". J. Biol. Chem. UNITED STATES. 275 (4): 2410–2414. doi:10.1074/jbc.275.4.2410. ISSN0021-9258. PMID10644693.
Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–174. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–156. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Li L, Ljungman M, Dixon JE (2000). "The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53". J. Biol. Chem. 275 (4): 2410–2414. doi:10.1074/jbc.275.4.2410. PMID10644693.
Mailand N, Lukas C, Kaiser BK, et al. (2002). "Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation". Nat. Cell Biol. 4 (4): 318–322. doi:10.1038/ncb777. PMID11901424.