Tyrosine-protein phosphatase non-receptor type 18 is an enzyme that in humans is encoded by the PTPN18gene.[1][2]
The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains a PEST motif, which often serves as a protein-protein interaction domain, and may be related to protein intracellular half-live. This gene was found to be expressed in brain, colon tissues, and several different tumor-derived cell lines. The biological function of this PTP has not yet been determined.[2]
↑Kim YW, Wang H, Sures I, Lammers R, Martell KJ, Ullrich A (January 1997). "Characterization of the PEST family protein tyrosine phosphatase BDP1". Oncogene. 13 (10): 2275–9. PMID8950995.
Dowbenko D, Spencer S, Quan C, Lasky LA (1998). "Identification of a novel polyproline recognition site in the cytoskeletal associated protein, proline serine threonine phosphatase interacting protein". J. Biol. Chem. 273 (2): 989–96. doi:10.1074/jbc.273.2.989. PMID9422760.
Wu Y, Dowbenko D, Lasky LA (1998). "PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase". J. Biol. Chem. 273 (46): 30487–96. doi:10.1074/jbc.273.46.30487. PMID9804817.
Cong F, Spencer S, Côté JF, et al. (2001). "Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation". Mol. Cell. 6 (6): 1413–23. doi:10.1016/S1097-2765(00)00138-6. PMID11163214.
Wise CA, Gillum JD, Seidman CE, et al. (2003). "Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder". Hum. Mol. Genet. 11 (8): 961–9. doi:10.1093/hmg/11.8.961. PMID11971877.
Shiota M, Tanihiro T, Nakagawa Y, et al. (2004). "Protein tyrosine phosphatase PTP20 induces actin cytoskeleton reorganization by dephosphorylating p190 RhoGAP in rat ovarian granulosa cells stimulated with follicle-stimulating hormone". Mol. Endocrinol. 17 (4): 534–49. doi:10.1210/me.2002-0187. PMID12554790.
Gensler M, Buschbeck M, Ullrich A (2004). "Negative regulation of HER2 signaling by the PEST-type protein-tyrosine phosphatase BDP1". J. Biol. Chem. 279 (13): 12110–6. doi:10.1074/jbc.M309527200. PMID14660651.
Blanchetot C, Chagnon M, Dubé N, et al. (2005). "Substrate-trapping techniques in the identification of cellular PTP targets". Methods. 35 (1): 44–53. doi:10.1016/j.ymeth.2004.07.007. PMID15588985.
Zhang Y, Wolf-Yadlin A, Ross PL, et al. (2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules". Mol. Cell. Proteomics. 4 (9): 1240–50. doi:10.1074/mcp.M500089-MCP200. PMID15951569.
Tao WA, Wollscheid B, O'Brien R, et al. (2005). "Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry". Nat. Methods. 2 (8): 591–8. doi:10.1038/nmeth776. PMID16094384.
Gandhi TK, Chandran S, Peri S, et al. (2007). "A bioinformatics analysis of protein tyrosine phosphatases in humans". DNA Res. 12 (2): 79–89. doi:10.1093/dnares/12.2.79. PMID16303740.