Cofilin is a widely distributed intracellular actin-modulating protein that binds and depolymerizes filamentous F-actin and inhibits the polymerization of monomeric G-actin in a pH-dependent manner.[2] Cofilin-2 is a member of the AC group of proteins that also includes cofilin-1 (CFL1) and destrin (DSTN), all of which regulate actin-filament dynamics.[3][4] The CFL2 gene encodes a skeletal muscle-specific isoform[5] localized to the thin filaments, where it exerts its effect on actin, in part through interactions with tropomyosins.[6]
Clinical significance
Mutations in the CFL2 gene are associated with nemaline myopathy. Deficiency of cofilin-2 may result in reduced depolymerization of actin filaments, causing their accumulation in nemaline bodies, minicores, and, possibly concentric laminated bodies.[7]
↑ 2.02.1Gillett GT, Fox MF, Rowe PS, Casimir CM, Povey S (May 1996). "Mapping of human non-muscle type cofilin (CFL1) to chromosome 11q13 and muscle-type cofilin (CFL2) to chromosome 14". Ann. Hum. Genet. 60 (Pt 3): 201–11. doi:10.1111/j.1469-1809.1996.tb00423.x. PMID8800436.
Thirion C, Stucka R, Mendel B, et al. (2001). "Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle". Eur. J. Biochem. 268 (12): 3473–82. doi:10.1046/j.1432-1327.2001.02247.x. PMID11422377.
Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID16189514.
Jia L, Young MF, Powell J, et al. (2002). "Gene expression profile of human bone marrow stromal cells: high-throughput expressed sequence tag sequencing analysis". Genomics. 79 (1): 7–17. doi:10.1006/geno.2001.6683. PMID11827452.
Kudryashov DS, Galkin VE, Orlova A, et al. (2006). "Cofilin cross-bridges adjacent actin protomers and replaces part of the longitudinal F-actin interface". J. Mol. Biol. 358 (3): 785–97. doi:10.1016/j.jmb.2006.02.029. PMID16530787.
Nebl G, Meuer SC, Samstag Y (1996). "Dephosphorylation of serine 3 regulates nuclear translocation of cofilin". J. Biol. Chem. 271 (42): 26276–80. doi:10.1074/jbc.271.42.26276. PMID8824278.
Zhang Y, Wolf-Yadlin A, Ross PL, et al. (2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules". Mol. Cell. Proteomics. 4 (9): 1240–50. doi:10.1074/mcp.M500089-MCP200. PMID15951569.
Hillier LD, Lennon G, Becker M, et al. (1996). "Generation and analysis of 280,000 human expressed sequence tags". Genome Res. 6 (9): 807–28. doi:10.1101/gr.6.9.807. PMID8889549.
Endo M, Ohashi K, Sasaki Y, et al. (2003). "Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin". J. Neurosci. 23 (7): 2527–37. PMID12684437.
Coiras M, Camafeita E, Ureña T, et al. (2006). "Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression". Proteomics. 6 Suppl 1: S63–73. doi:10.1002/pmic.200500437. PMID16526095.
Yang N, Higuchi O, Ohashi K, et al. (1998). "Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization". Nature. 393 (6687): 809–12. doi:10.1038/31735. PMID9655398.
Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID17081983.