Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4, also known as KCNN4, is a human gene encoding the KCa3.1 protein.[1]
The KCa3.1 protein is part of a potentially heterotetrameric voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization, which promotes calcium influx. The encoded protein may be part of the predominant calcium-activated potassium channel in T-lymphocytes. This gene is similar to other KCNN family potassium channel genes, but it differs enough to possibly be considered as part of a new subfamily.[1]
History
The channel activity was first described in 1958 by György Gárdos in human erythrocytes.[2] The channels is also named Gardos channel because of its discoverer.
↑Gardos G (1958). "The function of calcium in the potassium permeability of human erythrocytes". Biochim. Biophys. Acta. 30 (3): 653–4. doi:10.1016/0006-3002(58)90124-0. PMID13618284.
Further reading
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005). "International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels". Pharmacol. Rev. 57 (4): 463–72. doi:10.1124/pr.57.4.9. PMID16382103.
Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997). "A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes". J. Biol. Chem. 272 (52): 32723–6. doi:10.1074/jbc.272.52.32723. PMID9407042.
Ghanshani S, Coleman M, Gustavsson P, Wu AC, Gargus JJ, Gutman GA, Dahl N, Mohrenweiser H, Chandy KG (1998). "Human calcium-activated potassium channel gene KCNN4 maps to chromosome 19q13.2 in the region deleted in diamond-blackfan anemia". Genomics. 51 (1): 160–1. doi:10.1006/geno.1998.5333. PMID9693050.
Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999). "Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1". J. Biol. Chem. 274 (9): 5746–54. doi:10.1074/jbc.274.9.5746. PMID10026195.
Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG (2000). "Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences". J. Biol. Chem. 275 (47): 37137–49. doi:10.1074/jbc.M003941200. PMID10961988.
Wulff H, Gutman GA, Cahalan MD, Chandy KG (2001). "Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1". J. Biol. Chem. 276 (34): 32040–5. doi:10.1074/jbc.M105231200. PMID11425865.
Koegel H, Kaesler S, Burgstahler R, Werner S, Alzheimer C (2003). "Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation". J. Biol. Chem. 278 (5): 3323–30. doi:10.1074/jbc.M208914200. PMID12421833.
Mazzone JN, Kaiser RA, Buxton IL (2002). "Calcium-activated potassium channel expression in human myometrium: effect of pregnancy". Proc. West. Pharmacol. Soc. 45: 184–6. PMID12434576.
Syme CA, Hamilton KL, Jones HM, Gerlach AC, Giltinan L, Papworth GD, Watkins SC, Bradbury NA, Devor DC (2003). "Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal leucine zipper". J. Biol. Chem. 278 (10): 8476–86. doi:10.1074/jbc.M210072200. PMID12493744.
Hamilton KL, Syme CA, Devor DC (2003). "Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1". J. Biol. Chem. 278 (19): 16690–7. doi:10.1074/jbc.M212959200. PMID12609997.
Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz HH, Kuehr J, Brandis M, Kunzelmann K (2003). "Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia". Pediatr. Res. 53 (4): 608–18. doi:10.1203/01.PDR.0000057204.51420.DC. PMID12612194.
Bernard K, Bogliolo S, Soriani O, Ehrenfeld J (2003). "Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line". J. Membr. Biol. 196 (1): 15–31. doi:10.1007/s00232-003-0621-3. PMID14724753.
Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003). "Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis". Circulation. 108 (9): 1119–25. doi:10.1161/01.CIR.0000086464.04719.DD. PMID12939222.
Jones HM, Hamilton KL, Papworth GD, Syme CA, Watkins SC, Bradbury NA, Devor DC (2004). "Role of the NH2 terminus in the assembly and trafficking of the intermediate conductance Ca2+-activated K+ channel hIK1". J. Biol. Chem. 279 (15): 15531–40. doi:10.1074/jbc.M400069200. PMID14754884.
Gibson JS, Muzyamba MC (2004). "Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate". Bioelectrochemistry. 62 (2): 147–52. doi:10.1016/j.bioelechem.2003.07.008. PMID15039018.
Lew VL, Tiffert T, Etzion Z, Perdomo D, Daw N, Macdonald L, Bookchin RM (2005). "Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells". Blood. 105 (1): 361–7. doi:10.1182/blood-2004-01-0125. PMID15339840.