Synaptotagmins, such as SYT7, are brain-specific calcium-dependent phospholipid-binding proteins that play a role in synaptic exocytosis and neurotransmitter release. See MIM 600782.[supplied by OMIM][2]
↑Cooper PR, Nowak NJ, Higgins MJ, Church DM, Shows TB (May 1998). "Transcript mapping of the human chromosome 11q12-q13.1 gene-rich region identifies several newly described conserved genes". Genomics. 49 (3): 419–29. doi:10.1006/geno.1998.5291. PMID9615227.
↑Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K (March 2000). "SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms". The Journal of Biological Chemistry. 275 (13): 9823–31. doi:10.1074/jbc.275.13.9823. PMID10734137.
Further reading
Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Südhof TC (June 1995). "Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins". Nature. 375 (6532): 594–9. doi:10.1038/375594a0. PMID7791877.
Bonaldo MF, Lennon G, Soares MB (September 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Perin MS (October 1996). "Mirror image motifs mediate the interaction of the COOH terminus of multiple synaptotagmins with the neurexins and calmodulin". Biochemistry. 35 (43): 13808–16. doi:10.1021/bi960853x. PMID8901523.
Craxton M, Goedert M (November 1999). "Alternative splicing of synaptotagmins involving transmembrane exon skipping". FEBS Letters. 460 (3): 417–22. doi:10.1016/S0014-5793(99)01382-4. PMID10556508.
Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K (March 2000). "SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms". The Journal of Biological Chemistry. 275 (13): 9823–31. doi:10.1074/jbc.275.13.9823. PMID10734137.