KCNK2: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
imported>JCW-CleanerBot m →Further reading: task, replaced: Pflugers Arch → Pflügers Arch using AWB |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Potassium channel subfamily K member 2''' is a [[protein]] that in humans is encoded by the ''KCNK2'' [[gene]].<ref name="pmid9721223">{{cite journal |vauthors=Lesage F, Lazdunski M | title = Mapping of human potassium channel genes TREK-1 (KCNK2) and TASK (KCNK3) to chromosomes 1q41 and 2p23 | journal = Genomics | volume = 51 | issue = 3 | pages = 478–9 |date=Oct 1998 | pmid = 9721223 | pmc = | doi = 10.1006/geno.1998.5397 }}</ref><ref name="pmid16382106">{{cite journal |vauthors=Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S | title = International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels | journal = Pharmacol Rev | volume = 57 | issue = 4 | pages = 527–40 |date=Dec 2005 | pmid = 16382106 | pmc = | doi = 10.1124/pr.57.4.12 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: KCNK2 potassium channel, subfamily K, member 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3776| accessdate = }}</ref> | ||
}} | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = This gene encodes one of the members of the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that leaks potassium out of the cell to control resting membrane potential. The channel can be opened, however, by certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.<ref name="entrez" | | summary_text = This gene encodes K<sub>2P</sub>2.1, one of the members of the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that leaks potassium out of the cell to control resting membrane potential. The channel can be opened, however, by certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/> | ||
}} | }} | ||
==Function in neurons== | |||
Another name for this channel is ''TREK-1''. TREK-1 is part of the subfamily of mechano-gated [[potassium channel]]s that are present in mammalian neurons. They can be gated in both chemical and physical ways and can be opened via both physical stimuli and chemical stimuli. TREK-1 channels are found in a variety of tissues, but are particularly abundant in the brain and heart and are seen in various types of neurons.<ref>{{Cite journal | |||
| last1 = Fink | first1 = M. | |||
| last2 = Duprat | first2 = F. | |||
| last3 = Lesage | first3 = F. | |||
| last4 = Reyes | first4 = R. | |||
| last5 = Romey | first5 = G. | |||
| last6 = Heurteaux | first6 = C. | |||
| last7 = Lazdunski | first7 = M. | |||
| title = Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel | |||
| journal = The EMBO Journal | |||
| volume = 15 | |||
| issue = 24 | |||
| pages = 6854–6862 | |||
| year = 1996 | |||
| pmid = 9003761 | |||
| pmc = 452511 | |||
}}</ref> The [[C-terminus|C-terminal]] of TREK-1 channels plays a role in the mechanosensitivity of the channels.<ref name="ReferenceA">{{Cite journal | |||
| last1 = Patel | first1 = A. J. | |||
| last2 = Honoré | first2 = E. | |||
| last3 = Maingret | first3 = F. | |||
| last4 = Lesage | first4 = F. | |||
| last5 = Fink | first5 = M. | |||
| last6 = Duprat | first6 = F. | |||
| last7 = Lazdunski | first7 = M. | |||
| doi = 10.1093/emboj/17.15.4283 | |||
| title = A mammalian two pore domain mechano-gated S-like K+ channel | |||
| journal = The EMBO Journal | |||
| volume = 17 | |||
| issue = 15 | |||
| pages = 4283–4290 | |||
| pmc = 1170762 | |||
| year = 1998 | |||
| pmid = 9687497 | |||
}}</ref> | |||
In the neurons of the [[central nervous system]], TREK-1 channels are important in physiological, pathophysiological, and pharmacological processes, including having a role in [[Bioelectrogenesis|electrogenesis]], [[ischemia]], and [[anesthesia]]. TREK-1 has an important role in neuroprotection against [[epilepsy]] and brain and [[spinal cord]] ischemia and is being evaluated as a potential target for new developments of therapeutic agents for neurology and anesthesiology.<ref>{{Cite journal | |||
| last1 = Giorda | first1 = R. | |||
| last2 = Weisberg | first2 = E. P. | |||
| last3 = Ip | first3 = T. K. | |||
| last4 = Trucco | first4 = M. | |||
| title = Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1 | |||
| journal = Journal of Immunology | |||
| volume = 149 | |||
| issue = 6 | |||
| pages = 1957–1963 | |||
| year = 1992 | |||
| pmid = 1517565 | |||
}}</ref> | |||
In the absence of a properly functioning [[cytoskeleton]], TREK-1 channels can still open via mechanical gating.<ref name="ReferenceA"/> The [[cell membrane]] functions independently of the cytoskeleton and the thickness and curvature of the membrane is able to modulate the activity of the TREK-1 channels.<ref>{{cite journal | last=Patel | first=AJ | last2=Lazdunski | first2=M | last3=Honoré | first3=E | year=2001 | title=Lipid and mechano-gated 2P domain K(+) channels | journal=Curr Opin Cell Biol | volume=13 | issue=4 | pages=422–428 | doi=10.1016/s0955-0674(00)00231-3 | pmid=11454447}}</ref> The insertion of certain compounds into the membrane is thought to mediate the opening of TREK-1 by forming a curve in the membrane.<ref name="ReferenceA"/> | |||
==See also== | ==See also== | ||
Line 58: | Line 64: | ||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
Line 64: | Line 70: | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal |vauthors=Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N |title=Potassium leak channels and the KCNK family of two-P-domain subunits. |journal=Nat. Rev. Neurosci. |volume=2 |issue= 3 |pages= 175–84 |year= 2001 |pmid= 11256078 |doi=10.1038/35058574 }} | ||
*{{cite journal | author=Honoré E |title=The neuronal background K2P channels: focus on TREK1. |journal=Nat. Rev. Neurosci. |volume=8 |issue= 4 |pages= 251–61 |year= 2007 |pmid= 17375039 |doi= 10.1038/nrn2117 }} | |||
*{{cite journal | author=Honoré E |title=The neuronal background K2P channels: focus on TREK1. |journal=Nat. Rev. Neurosci. |volume=8 |issue= 4 |pages= | *{{cite journal |vauthors=Fink M, Duprat F, Lesage F, etal |title=Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. |journal=EMBO J. |volume=15 |issue= 24 |pages= 6854–62 |year= 1997 |pmid= 9003761 |doi= | pmc=452511 }} | ||
*{{cite journal | *{{cite journal |vauthors=Patel AJ, Honoré E, Lesage F, etal |title=Inhalational anesthetics activate two-pore-domain background K+ channels. |journal=Nat. Neurosci. |volume=2 |issue= 5 |pages= 422–6 |year= 1999 |pmid= 10321245 |doi= 10.1038/8084 }} | ||
*{{cite journal |vauthors=Meadows HJ, Benham CD, Cairns W, etal |title=Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. |journal=Pflügers Arch. |volume=439 |issue= 6 |pages= 714–22 |year= 2000 |pmid= 10784345 |doi=10.1007/s004240050997 }} | |||
*{{cite journal | *{{cite journal |vauthors=Maylie J, Adelman JP |title=Beam me up, Scottie! TREK channels swing both ways. |journal=Nat. Neurosci. |volume=4 |issue= 5 |pages= 457–8 |year= 2001 |pmid= 11319549 |doi= 10.1038/87402 }} | ||
*{{cite journal | *{{cite journal |vauthors=Bockenhauer D, Zilberberg N, Goldstein SA |title=KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. |journal=Nat. Neurosci. |volume=4 |issue= 5 |pages= 486–91 |year= 2001 |pmid= 11319556 |doi= 10.1038/87434 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Enyeart JJ, Xu L, Danthi S, Enyeart JA |title=An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1. |journal=J. Biol. Chem. |volume=277 |issue= 51 |pages= 49186–99 |year= 2003 |pmid= 12368289 |doi= 10.1074/jbc.M207233200 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Imabayashi H, Mori T, Gojo S, etal |title=Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. |journal=Exp. Cell Res. |volume=288 |issue= 1 |pages= 35–50 |year= 2003 |pmid= 12878157 |doi=10.1016/S0014-4827(03)00130-7 }} | ||
*{{cite journal | *{{cite journal |vauthors=Miller P, Peers C, Kemp PJ |title=Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: physiological impact in acidosis and alkalosis. |journal=Am. J. Physiol., Cell Physiol. |volume=286 |issue= 2 |pages= C272–82 |year= 2004 |pmid= 14522822 |doi= 10.1152/ajpcell.00334.2003 }} | ||
*{{cite journal | *{{cite journal |vauthors=Fu GK, Wang JT, Yang J, etal |title=Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes. |journal=Genomics |volume=84 |issue= 1 |pages= 205–10 |year= 2005 |pmid= 15203218 |doi= 10.1016/j.ygeno.2004.01.011 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Kennard LE, Chumbley JR, Ranatunga KM, etal |title=Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. |journal=Br. J. Pharmacol. |volume=144 |issue= 6 |pages= 821–9 |year= 2005 |pmid= 15685212 |doi= 10.1038/sj.bjp.0706068 | pmc=1576064 }} | ||
*{{cite journal | *{{cite journal |vauthors=Miller P, Kemp PJ, Peers C |title=Structural requirements for O2 sensing by the human tandem-P domain channel, hTREK1. |journal=Biochem. Biophys. Res. Commun. |volume=331 |issue= 4 |pages= 1253–6 |year= 2005 |pmid= 15883010 |doi= 10.1016/j.bbrc.2005.04.042 }} | ||
*{{cite journal | *{{cite journal |vauthors=Murbartián J, Lei Q, Sando JJ, Bayliss DA |title=Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. |journal=J. Biol. Chem. |volume=280 |issue= 34 |pages= 30175–84 |year= 2005 |pmid= 16006563 |doi= 10.1074/jbc.M503862200 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Hughes S, Magnay J, Foreman M, etal |title=Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts. |journal=J. Cell. Physiol. |volume=206 |issue= 3 |pages= 738–48 |year= 2006 |pmid= 16250016 |doi= 10.1002/jcp.20536 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Kimura K, Wakamatsu A, Suzuki Y, etal |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 }} | ||
*{{cite journal | |||
*{{cite journal | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
Line 89: | Line 93: | ||
* {{MeshName|KCNK2+protein,+human}} | * {{MeshName|KCNK2+protein,+human}} | ||
{{NLM content}} | {{NLM content}} | ||
{{Ion channels}} | {{Ion channels|g3}} | ||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
[[Category:Ion channels]] | [[Category:Ion channels]] | ||
Latest revision as of 16:03, 29 June 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Potassium channel subfamily K member 2 is a protein that in humans is encoded by the KCNK2 gene.[1][2][3]
This gene encodes K2P2.1, one of the members of the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that leaks potassium out of the cell to control resting membrane potential. The channel can be opened, however, by certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.[3]
Function in neurons
Another name for this channel is TREK-1. TREK-1 is part of the subfamily of mechano-gated potassium channels that are present in mammalian neurons. They can be gated in both chemical and physical ways and can be opened via both physical stimuli and chemical stimuli. TREK-1 channels are found in a variety of tissues, but are particularly abundant in the brain and heart and are seen in various types of neurons.[4] The C-terminal of TREK-1 channels plays a role in the mechanosensitivity of the channels.[5]
In the neurons of the central nervous system, TREK-1 channels are important in physiological, pathophysiological, and pharmacological processes, including having a role in electrogenesis, ischemia, and anesthesia. TREK-1 has an important role in neuroprotection against epilepsy and brain and spinal cord ischemia and is being evaluated as a potential target for new developments of therapeutic agents for neurology and anesthesiology.[6]
In the absence of a properly functioning cytoskeleton, TREK-1 channels can still open via mechanical gating.[5] The cell membrane functions independently of the cytoskeleton and the thickness and curvature of the membrane is able to modulate the activity of the TREK-1 channels.[7] The insertion of certain compounds into the membrane is thought to mediate the opening of TREK-1 by forming a curve in the membrane.[5]
See also
References
- ↑ Lesage F, Lazdunski M (Oct 1998). "Mapping of human potassium channel genes TREK-1 (KCNK2) and TASK (KCNK3) to chromosomes 1q41 and 2p23". Genomics. 51 (3): 478–9. doi:10.1006/geno.1998.5397. PMID 9721223.
- ↑ Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (Dec 2005). "International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels". Pharmacol Rev. 57 (4): 527–40. doi:10.1124/pr.57.4.12. PMID 16382106.
- ↑ 3.0 3.1 "Entrez Gene: KCNK2 potassium channel, subfamily K, member 2".
- ↑ Fink, M.; Duprat, F.; Lesage, F.; Reyes, R.; Romey, G.; Heurteaux, C.; Lazdunski, M. (1996). "Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel". The EMBO Journal. 15 (24): 6854–6862. PMC 452511. PMID 9003761.
- ↑ 5.0 5.1 5.2 Patel, A. J.; Honoré, E.; Maingret, F.; Lesage, F.; Fink, M.; Duprat, F.; Lazdunski, M. (1998). "A mammalian two pore domain mechano-gated S-like K+ channel". The EMBO Journal. 17 (15): 4283–4290. doi:10.1093/emboj/17.15.4283. PMC 1170762. PMID 9687497.
- ↑ Giorda, R.; Weisberg, E. P.; Ip, T. K.; Trucco, M. (1992). "Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1". Journal of Immunology. 149 (6): 1957–1963. PMID 1517565.
- ↑ Patel, AJ; Lazdunski, M; Honoré, E (2001). "Lipid and mechano-gated 2P domain K(+) channels". Curr Opin Cell Biol. 13 (4): 422–428. doi:10.1016/s0955-0674(00)00231-3. PMID 11454447.
Further reading
- Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001). "Potassium leak channels and the KCNK family of two-P-domain subunits". Nat. Rev. Neurosci. 2 (3): 175–84. doi:10.1038/35058574. PMID 11256078.
- Honoré E (2007). "The neuronal background K2P channels: focus on TREK1". Nat. Rev. Neurosci. 8 (4): 251–61. doi:10.1038/nrn2117. PMID 17375039.
- Fink M, Duprat F, Lesage F, et al. (1997). "Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel". EMBO J. 15 (24): 6854–62. PMC 452511. PMID 9003761.
- Patel AJ, Honoré E, Lesage F, et al. (1999). "Inhalational anesthetics activate two-pore-domain background K+ channels". Nat. Neurosci. 2 (5): 422–6. doi:10.1038/8084. PMID 10321245.
- Meadows HJ, Benham CD, Cairns W, et al. (2000). "Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel". Pflügers Arch. 439 (6): 714–22. doi:10.1007/s004240050997. PMID 10784345.
- Maylie J, Adelman JP (2001). "Beam me up, Scottie! TREK channels swing both ways". Nat. Neurosci. 4 (5): 457–8. doi:10.1038/87402. PMID 11319549.
- Bockenhauer D, Zilberberg N, Goldstein SA (2001). "KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel". Nat. Neurosci. 4 (5): 486–91. doi:10.1038/87434. PMID 11319556.
- Enyeart JJ, Xu L, Danthi S, Enyeart JA (2003). "An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1". J. Biol. Chem. 277 (51): 49186–99. doi:10.1074/jbc.M207233200. PMID 12368289.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Imabayashi H, Mori T, Gojo S, et al. (2003). "Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis". Exp. Cell Res. 288 (1): 35–50. doi:10.1016/S0014-4827(03)00130-7. PMID 12878157.
- Miller P, Peers C, Kemp PJ (2004). "Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: physiological impact in acidosis and alkalosis". Am. J. Physiol., Cell Physiol. 286 (2): C272–82. doi:10.1152/ajpcell.00334.2003. PMID 14522822.
- Fu GK, Wang JT, Yang J, et al. (2005). "Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes". Genomics. 84 (1): 205–10. doi:10.1016/j.ygeno.2004.01.011. PMID 15203218.
- Kennard LE, Chumbley JR, Ranatunga KM, et al. (2005). "Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine". Br. J. Pharmacol. 144 (6): 821–9. doi:10.1038/sj.bjp.0706068. PMC 1576064. PMID 15685212.
- Miller P, Kemp PJ, Peers C (2005). "Structural requirements for O2 sensing by the human tandem-P domain channel, hTREK1". Biochem. Biophys. Res. Commun. 331 (4): 1253–6. doi:10.1016/j.bbrc.2005.04.042. PMID 15883010.
- Murbartián J, Lei Q, Sando JJ, Bayliss DA (2005). "Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels". J. Biol. Chem. 280 (34): 30175–84. doi:10.1074/jbc.M503862200. PMID 16006563.
- Hughes S, Magnay J, Foreman M, et al. (2006). "Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts". J. Cell. Physiol. 206 (3): 738–48. doi:10.1002/jcp.20536. PMID 16250016.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
External links
- KCNK2+protein,+human at the US National Library of Medicine Medical Subject Headings (MeSH)
This article incorporates text from the United States National Library of Medicine, which is in the public domain.