WNK3: Difference between revisions
Jump to navigation
Jump to search
m (Bot: HTTP→HTTPS) |
imported>JCW-CleanerBot m (→Further reading: task, replaced: C. R. Acad. Sci. III, Sci. Vie → Comptes Rendus de l'Académie des Sciences, Série III using AWB) |
||
Line 18: | Line 18: | ||
*{{cite journal |vauthors=San-Cristobal P, Ponce-Coria J, Vázquez N, etal |title=WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na<sup>+</sup>-Cl<sup>−</sup> cotransporter |journal=Am. J. Physiol. Renal Physiol. |volume=295 |issue= 4 |pages= F1199-206 |year= 2008 |pmid= 18701621 |doi= 10.1152/ajprenal.90396.2008 |pmc=2576145}} | *{{cite journal |vauthors=San-Cristobal P, Ponce-Coria J, Vázquez N, etal |title=WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na<sup>+</sup>-Cl<sup>−</sup> cotransporter |journal=Am. J. Physiol. Renal Physiol. |volume=295 |issue= 4 |pages= F1199-206 |year= 2008 |pmid= 18701621 |doi= 10.1152/ajprenal.90396.2008 |pmc=2576145}} | ||
*{{cite journal |vauthors=Glover M, Zuber AM, O'Shaughnessy KM |title=Renal and brain isoforms of WNK3 have opposite effects on NCCT expression |journal=J. Am. Soc. Nephrol. |volume=20 |issue= 6 |pages= 1314–22 |year= 2009 |pmid= 19470686 |doi= 10.1681/ASN.2008050542 |pmc=2689907}} | *{{cite journal |vauthors=Glover M, Zuber AM, O'Shaughnessy KM |title=Renal and brain isoforms of WNK3 have opposite effects on NCCT expression |journal=J. Am. Soc. Nephrol. |volume=20 |issue= 6 |pages= 1314–22 |year= 2009 |pmid= 19470686 |doi= 10.1681/ASN.2008050542 |pmc=2689907}} | ||
*{{cite journal |vauthors=Auffray C, Behar G, Bois F, etal |title=[IMAGE: molecular integration of the analysis of the human genome and its expression] |journal= | *{{cite journal |vauthors=Auffray C, Behar G, Bois F, etal |title=[IMAGE: molecular integration of the analysis of the human genome and its expression] |journal=Comptes Rendus de l'Académie des Sciences, Série III |volume=318 |issue= 2 |pages= 263–72 |year= 1995 |pmid= 7757816 |doi= }} | ||
*{{cite journal |vauthors=Kahle KT, Ring AM, Lifton RP |title=Molecular physiology of the WNK kinases |journal=Annu. Rev. Physiol. |volume=70 |issue= |pages= 329–55 |year= 2008 |pmid= 17961084 |doi= 10.1146/annurev.physiol.70.113006.100651 }} | *{{cite journal |vauthors=Kahle KT, Ring AM, Lifton RP |title=Molecular physiology of the WNK kinases |journal=Annu. Rev. Physiol. |volume=70 |issue= |pages= 329–55 |year= 2008 |pmid= 17961084 |doi= 10.1146/annurev.physiol.70.113006.100651 }} | ||
*{{cite journal |vauthors=Zhang W, Na T, Peng JB |title=WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway |journal=Am. J. Physiol. Renal Physiol. |volume=295 |issue= 5 |pages= F1472-84 |year= 2008 |pmid= 18768590 |doi= 10.1152/ajprenal.90229.2008 |pmc=2584897}} | *{{cite journal |vauthors=Zhang W, Na T, Peng JB |title=WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway |journal=Am. J. Physiol. Renal Physiol. |volume=295 |issue= 5 |pages= F1472-84 |year= 2008 |pmid= 18768590 |doi= 10.1152/ajprenal.90229.2008 |pmc=2584897}} |
Latest revision as of 03:55, 6 March 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Serine/threonine-protein kinase WNK3, also known as protein kinase lysine-deficient 3, is a protein that in humans is encoded by the WNK3 gene.[1]
Function
WNK3 is a protein belonging to the 'with no lysine' family of serine-threonine protein kinases. These family members lack the catalytic lysine in subdomain II, and instead have a conserved lysine in subdomain I. This family member functions as a positive regulator of the transcellular Ca2+ transport pathway, and it plays a role in the increase of cell survival in a caspase 3 dependent pathway.[1]
References
Further reading
- Ross MT, Grafham DV, Coffey AJ, et al. (2005). "The DNA sequence of the human X chromosome". Nature. 434 (7031): 325–37. doi:10.1038/nature03440. PMC 2665286. PMID 15772651.
- Nagase T, Kikuno R, Nakayama M, et al. (2000). "Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (4): 273–81. doi:10.1093/dnares/7.4.271. PMID 10997877.
- Yang CL, Zhu X, Ellison DH (2007). "The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex". J. Clin. Invest. 117 (11): 3403–11. doi:10.1172/JCI32033. PMC 2045602. PMID 17975670.
- Rinehart J, Kahle KT, de Los Heros P, et al. (2005). "WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl− cotransporters required for normal blood pressure homeostasis". Proc. Natl. Acad. Sci. U.S.A. 102 (46): 16777–82. doi:10.1073/pnas.0508303102. PMC 1283841. PMID 16275913.
- Ko B, Hoover RS (2009). "Molecular physiology of the thiazide-sensitive sodium-chloride cotransporter". Curr. Opin. Nephrol. Hypertens. 18 (5): 421–7. doi:10.1097/MNH.0b013e32832f2fcb. PMC 2947818. PMID 19636250.
- San-Cristobal P, Ponce-Coria J, Vázquez N, et al. (2008). "WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl− cotransporter". Am. J. Physiol. Renal Physiol. 295 (4): F1199–206. doi:10.1152/ajprenal.90396.2008. PMC 2576145. PMID 18701621.
- Glover M, Zuber AM, O'Shaughnessy KM (2009). "Renal and brain isoforms of WNK3 have opposite effects on NCCT expression". J. Am. Soc. Nephrol. 20 (6): 1314–22. doi:10.1681/ASN.2008050542. PMC 2689907. PMID 19470686.
- Auffray C, Behar G, Bois F, et al. (1995). "[IMAGE: molecular integration of the analysis of the human genome and its expression]". Comptes Rendus de l'Académie des Sciences, Série III. 318 (2): 263–72. PMID 7757816.
- Kahle KT, Ring AM, Lifton RP (2008). "Molecular physiology of the WNK kinases". Annu. Rev. Physiol. 70: 329–55. doi:10.1146/annurev.physiol.70.113006.100651. PMID 17961084.
- Zhang W, Na T, Peng JB (2008). "WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway". Am. J. Physiol. Renal Physiol. 295 (5): F1472–84. doi:10.1152/ajprenal.90229.2008. PMC 2584897. PMID 18768590.
- Veríssimo F, Silva E, Morris JD, et al. (2006). "Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway". Oncogene. 25 (30): 4172–82. doi:10.1038/sj.onc.1209449. PMID 16501604.
- Moniz S, Jordan P (2010). "Emerging roles for WNK kinases in cancer". Cell. Mol. Life Sci. 67 (8): 1265–76. doi:10.1007/s00018-010-0261-6. PMID 20094755.
- Talmud PJ, Drenos F, Shah S, et al. (2009). "Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip". Am. J. Hum. Genet. 85 (5): 628–42. doi:10.1016/j.ajhg.2009.10.014. PMC 2775832. PMID 19913121.
- Qiao Y, Liu X, Harvard C, et al. (2008). "Autism-associated familial microdeletion of Xp11.22". Clin. Genet. 74 (2): 134–44. doi:10.1111/j.1399-0004.2008.01028.x. PMID 18498374.
- Wilson FH, Disse-Nicodème S, Choate KA, et al. (2001). "Human hypertension caused by mutations in WNK kinases". Science. 293 (5532): 1107–12. doi:10.1126/science.1062844. PMID 11498583.
- Heise CJ, Xu BE, Deaton SL, et al. (2010). "Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members". J. Biol. Chem. 285 (33): 25161–7. doi:10.1074/jbc.M110.103432. PMC 2919078. PMID 20525693.
- Holden S, Cox J, Raymond FL (2004). "Cloning, genomic organization, alternative splicing and expression analysis of the human gene WNK3 (PRKWNK3)". Gene. 335: 109–19. doi:10.1016/j.gene.2004.03.009. PMID 15194194.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Veríssimo F, Jordan P (2001). "WNK kinases, a novel protein kinase subfamily in multi-cellular organisms". Oncogene. 20 (39): 5562–9. doi:10.1038/sj.onc.1204726. PMID 11571656.
- Bailey SD, Xie C, Do R, et al. (2010). "Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study". Diabetes Care. 33 (10): 2250–3. doi:10.2337/dc10-0452. PMC 2945168. PMID 20628086.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
This article on a gene on the human X chromosome and/or its associated protein is a stub. You can help Wikipedia by expanding it. |