Calcitonin gene-related peptide: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
imported>Boghog
(consistent citation formatting)
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{protein
{{infobox protein
| Name = [[Calcitonin|calcitonin-related polypeptide alpha]]
| caption =
| image =
| width =
| HGNCid = 1437
| Symbol = [[Calcitonin|CALCA]]
| AltSymbols = CALC1
| EntrezGene = 796
| OMIM = 114130
| RefSeq = NM_001741
| UniProt = P06881
| PDB =
| ECnumber =
| Chromosome = 11
| Arm = p
| Band = 15.2
| LocusSupplementaryData =
}}
{{infobox protein
| Name = calcitonin-related polypeptide, beta
| Name = calcitonin-related polypeptide, beta
| caption =  
| caption =  
Line 18: Line 37:
| LocusSupplementaryData = -p12
| LocusSupplementaryData = -p12
}}
}}
'''Calcitonin gene-related peptide''' ('''CGRP''') is a member of the [[calcitonin]] family of [[peptide]]s, which in humans exists in two forms, α-CGRP and β-CGRP. α-CGRP is a 37-[[amino acid]] peptide and is formed from the [[alternative splicing]]<ref>{{cite journal | vauthors = Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM | title = Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products | journal = Nature | volume = 298 | issue = 5871 | pages = 240–4 | date = July 1982 | pmid = 6283379 | doi = 10.1038/298240a0 }}</ref> of the calcitonin/CGRP gene located on [[chromosome 11]].  The less-studied β-CGRP differs in three amino acids (in humans) and is encoded in a separate gene in the same vicinity.<ref name="pmid19062206">{{cite journal | vauthors = Rezaeian AH, Isokane T, Nishibori M, Chiba M, Hiraiwa N, Yoshizawa M, Yasue H | title = alphaCGRP and betaCGRP transcript amount in mouse tissues of various developmental stages and their tissue expression sites | journal = Brain & Development | volume = 31 | issue = 9 | pages = 682–93 | date = October 2009 | pmid = 19062206 | doi = 10.1016/j.braindev.2008.10.011 }}</ref>
== Function ==


{{SI}}
CGRP is produced in both peripheral and central [[neurons]].<ref name="pmid6346105">{{cite journal | vauthors = Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM | title = Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing | journal = Nature | volume = 304 | issue = 5922 | pages = 129–35 | year = 1983 | pmid = 6346105 | doi = 10.1038/304129a0 }}</ref> It is a potent peptide [[vasodilator]] and can function in the transmission of [[nociception]].<ref name="pmid3917554">{{cite journal | vauthors = Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I | title = Calcitonin gene-related peptide is a potent vasodilator | journal = Nature | volume = 313 | issue = 5997 | pages = 54–6 | year = 1985 | pmid = 3917554 | doi = 10.1038/313054a0 }}</ref><ref name="pmid3488550">{{cite journal | vauthors = McCulloch J, Uddman R, Kingman TA, Edvinsson L | title = Calcitonin gene-related peptide: functional role in cerebrovascular regulation | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 83 | issue = 15 | pages = 5731–5 | date = August 1986 | pmid = 3488550 | pmc = 386363 | doi = 10.1073/pnas.83.15.5731 }}</ref> In the spinal cord, the function and expression of CGRP may differ depending on the location of synthesis. CGRP is derived mainly from the cell bodies of motor neurons when synthesized in the ventral horn of the spinal cord and may contribute to the regeneration of nervous tissue after injury. Conversely, CGRP is derived from dorsal root ganglion when synthesized in the dorsal horn of the spinal cord and may be linked to the transmission of pain.<ref name="pmid19969463">{{cite journal | vauthors = Chen LJ, Zhang FG, Li J, Song HX, Zhou LB, Yao BC, Li F, Li WC | title = Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury | journal = Journal of Clinical Neuroscience | volume = 17 | issue = 1 | pages = 87–91 | date = January 2010 | pmid = 19969463 | doi = 10.1016/j.jocn.2009.03.042 }}</ref> In the trigeminal vascular system, the cell bodies on the [[trigeminal ganglion]] are the main source of CGRP. CGRP is thought to play a role in cardiovascular homeostasis and [[nociception]].
{{EH}}


'''Calcitonin gene related peptide''' (CGRP) is derived, with [[calcitonin]], from the CT/CGRP gene located on [[chromosome 11]]. CGRP is a 37 amino acid peptide and is the most potent endogenous [[vasodilator]] currently known.
== Receptors ==


CGRP is primarily produced in nervous tissue, however, its receptors are expressed throughout the body. CGRP is also strongly implicated in the vasodilatory effect of [[endogenous]] [[cannabinoid]] [[anandamide]] is the brain. This effect was found to be [[Receptor antagonist|antagonised]] by [[capsazepine]].<ref>http://cat.inist.fr/?aModele=afficheN&cpsidt=1958043</ref>
CGRP mediates its effects through a [[heteromeric]] receptor composed of a [[G protein-coupled receptor]] called calcitonin receptor-like receptor ([[CALCRL]]) and a [[receptor activity-modifying protein]] ([[RAMP1]]).<ref name="pmid12037140">{{cite journal | vauthors = Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM | title = International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors | journal = Pharmacological Reviews | volume = 54 | issue = 2 | pages = 233–46 | date = June 2002 | pmid = 12037140 | doi = 10.1124/pr.54.2.233 }}</ref> [[CALCRL|CGRP receptor]]s are found throughout the body, suggesting that the protein may modulate a variety of physiological functions in all major systems (e.g., [[respiratory system|respiratory]], [[endocrine system|endocrine]], [[gastrointestinal system|gastrointestinal]], [[immune system|immune]], and [[cardiovascular system|cardiovascular]]).<ref name="pmid15464043">{{cite journal | vauthors = Arulmani U, Maassenvandenbrink A, Villalón CM, Saxena PR | title = Calcitonin gene-related peptide and its role in migraine pathophysiology | journal = European Journal of Pharmacology | volume = 500 | issue = 1–3 | pages = 315–30 | date = October 2004 | pmid = 15464043 | doi = 10.1016/j.ejphar.2004.07.035 }}</ref> The extracellular loop number 2 is fundamental for ligand induced activation, with key interactions of R274/Y278/D280/W283.<ref name="pmid28572046">{{cite journal | vauthors = Woolley MJ, Simms J, Mobarec JC, Reynolds CA, Poyner DR, Conner AC | title = Understanding the molecular functions of the second extracellular loop (ECL2) of the calcitonin gene-related peptide (CGRP) receptor using a comprehensive mutagenesis approach | journal = Molecular and Cellular Endocrinology | volume = 454 | issue =  | pages = 39–49 | date = October 2017 | pmid = 28572046 | doi = 10.1016/j.mce.2017.05.034 }}</ref>
CGRP is also currently a major target of research in regards to factors effecting the onset of [[migraine|migrane headaches]].


==External Links==
== Regulation ==
 
Regulation of the calcitonin gene-related peptide (CGRP) gene is in part controlled by the expression of the [[MAPK signaling pathway|mitogen-activated protein kinases (MAPK) signaling pathway]],<ref name="pmid12574409">{{cite journal | vauthors = Durham PL, Russo AF | title = Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons | journal = The Journal of Neuroscience | volume = 23 | issue = 3 | pages = 807–15 | date = February 2003 | pmid = 12574409 | doi =  }}</ref> [[cytokines]] such as [[TNFα]] <ref name="pmid12684435">{{cite journal | vauthors = Schäfers M, Svensson CI, Sommer C, Sorkin LS | title = Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons | journal = The Journal of Neuroscience | volume = 23 | issue = 7 | pages = 2517–21 | date = April 2003 | pmid = 12684435 | doi =  }}</ref> and [[iNOS]].<ref name="pmid18221935">{{cite journal | vauthors = Li J, Vause CV, Durham PL | title = Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells | journal = Brain Research | volume = 1196 | issue =  | pages = 22–32 | date = February 2008 | pmid = 18221935 | pmc = 2268710 | doi = 10.1016/j.brainres.2007.12.028 }}</ref>
 
[[5-HT1 receptor|5HT1]] receptor [[agonists]], such as [[sumatriptan]], increase intracellular calcium, which cause decreases in CGRP promoter activity.<ref name="pmid12574409"/>
 
== Research ==
{{further|Calcitonin gene-related peptide receptor antagonist}}
{{primary sources|section|date=February 2018}}
{{update|section|date=February 2018}}
Increased levels of CGRP have been reported in [[migraine]] and [[temporomandibular joint disorder]] patients as well as a variety of other diseases such as cardiac failure, hypertension, and sepsis.<ref name="pmid7585923">{{cite journal | vauthors = Buzzi MG, Bonamini M, Moskowitz MA | title = Neurogenic model of migraine | journal = Cephalalgia | volume = 15 | issue = 4 | pages = 277–80 | year = 1995 | pmid = 7585923 | doi = 10.1046/j.1468-2982.1995.1504277.x }}</ref><ref name="pmid1637085">{{cite journal | vauthors = Goto K, Miyauchi T, Homma S, Ohshima N | title = Calcitonin gene-related peptide in the regulation of cardiac function | journal = Annals of the New York Academy of Sciences | volume = 657 | issue =  | pages = 194–203 | date = June 1992 | pmid = 1637085 | doi = 10.1111/j.1749-6632.1992.tb22768.x }}</ref><ref name="pmid2247835">{{cite journal | vauthors = Joyce CD, Fiscus RR, Wang X, Dries DJ, Morris RC, Prinz RA | title = Calcitonin gene-related peptide levels are elevated in patients with sepsis | journal = Surgery | volume = 108 | issue = 6 | pages = 1097–101 | date = December 1990 | pmid = 2247835 | doi =  }}</ref><ref name="pmid7828188">{{cite journal | vauthors = Edvinsson L, Goadsby PJ | title = Neuropeptides in migraine and cluster headache | journal = Cephalalgia | volume = 14 | issue = 5 | pages = 320–7 | date = October 1994 | pmid = 7828188 | doi = 10.1046/j.1468-2982.1994.1405320.x }}</ref><ref name="pmid8395342">{{cite journal | vauthors = Ferrari MD, Saxena PR | title = On serotonin and migraine: a clinical and pharmacological review | journal = Cephalalgia | volume = 13 | issue = 3 | pages = 151–65 | date = June 1993 | pmid = 8395342 | doi = 10.1046/j.1468-2982.1993.1303151.x }}</ref><ref name="pmid7518321">{{cite journal | vauthors = Goadsby PJ, Edvinsson L | title = Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies | journal = Brain | volume = 117 ( Pt 3) | issue = 3 | pages = 427–34 | date = June 1994 | pmid = 7518321 | doi = 10.1093/brain/117.3.427 }}</ref>
 
There is mounting evidence to suggest that CGRP may be ''beneficial'' in preventing the development of hypertension and cardiovascular pathologies associated with hypertension.<ref>{{cite journal | vauthors = Russell FA, King R, Smillie SJ, Kodji X, Brain SD | title = Calcitonin gene-related peptide: physiology and pathophysiology | journal = Physiological Reviews | volume = 94 | issue = 4 | pages = 1099–142 | date = October 2014 | pmid = 25287861 | pmc = 4187032 | doi = 10.1152/physrev.00034.2013 | url = http://physrev.physiology.org/content/94/4/1099 | access-date = 2015-04-17 }}</ref> Prophylactic therapy with calcitonin gene‐related peptides (CGRPs) may have unknown fertility consequences for women of child bearing age. This is of particular concern, as females (16.6%) are more genetically predisposed than males (7.5%) to endure this debilitative health condition.<ref>{{cite journal | vauthors = Pellesi L, Guerzoni S, Pini LA | title = Spotlight on Anti-CGRP Monoclonal Antibodies in Migraine: The Clinical Evidence to Date | journal = Clinical Pharmacology in Drug Development | volume = 6 | issue = 6 | pages = 534–547 | date = November 2017 | pmid = 28409893 | pmc = 5697612 | doi = 10.1002/cpdd.345 }}</ref>
 
Preclinical evidence suggests that, during a [[migraine]], activated primary sensory neurons (meningeal nociceptors) in the [[trigeminal ganglion]] release CGRP from their peripherally projecting nerve endings located within the [[meninges]].<ref name="pmid16927957">{{cite journal | vauthors = Durham PL | title = Calcitonin gene-related peptide (CGRP) and migraine | journal = Headache | volume = 46 Suppl 1 | issue = Suppl 1 | pages = S3-8 | date = June 2006 | pmid = 16927957 | pmc = 3134175 | doi = 10.1111/j.1526-4610.2006.00483.x }}</ref> This CGRP then binds to and activates CGRP receptors located around meningeal vessels, causing vasodilation, [[mast cell]] degranulation, and plasma extravasation.<ref name="pmid15464043"/><ref name="pmid16927957"/><ref name="pmid1699472">{{cite journal | vauthors = Goadsby PJ, Edvinsson L, Ekman R | title = Vasoactive peptide release in the extracerebral circulation of humans during migraine headache | journal = Annals of Neurology | volume = 28 | issue = 2 | pages = 183–7 | date = August 1990 | pmid = 1699472 | doi = 10.1002/ana.410280213 }}</ref><ref name="pmid16866713">{{cite journal | vauthors = Edvinsson L | title = Neuronal signal substances as biomarkers of migraine | journal = Headache | volume = 46 | issue = 7 | pages = 1088–94 | year = 2006 | pmid = 16866713 | doi = 10.1111/j.1526-4610.2006.00502.x }}</ref> Human observations have further implicated the role of CGRP in the pathophysiology of migraine. Activation of primary sensory neurons in the trigeminal vascular system in humans can cause the release of CGRP. During some migraine attacks, increased concentrations of CGRP can be found in both saliva and plasma drawn from the external jugular vein.<ref name="pmid15464043"/><ref name="pmid16927957"/><ref name="pmid1699472"/><ref name="pmid16866713"/> Furthermore, intravenous administration of alpha-CGRP is able to induce headache in individuals susceptible to migraine.<ref name="pmid11993614">{{cite journal | vauthors = Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J | title = CGRP may play a causative role in migraine | journal = Cephalalgia | volume = 22 | issue = 1 | pages = 54–61 | date = February 2002 | pmid = 11993614 | doi = 10.1046/j.1468-2982.2002.00310.x }}</ref>
 
== References ==
{{Reflist|colwidth = 30em}}
 
== External links ==
* {{MeshName|Calcitonin+Gene-Related+Peptide}}
* {{MeshName|Calcitonin+Gene-Related+Peptide}}
==References==
<references/>


{{Neuropeptides}}
{{Neuropeptides}}
{{Signaling peptide/protein receptor modulators}}
{{Sigma receptor modulators}}


{{SIB}}
[[Category:Neuropeptides]]
 
{{WH}}
{{WS}}

Latest revision as of 18:38, 17 January 2019

calcitonin-related polypeptide alpha
Identifiers
SymbolCALCA
Alt. symbolsCALC1
Entrez796
HUGO1437
OMIM114130
RefSeqNM_001741
UniProtP06881
Other data
LocusChr. 11 p15.2
calcitonin-related polypeptide, beta
Identifiers
SymbolCALCB
Alt. symbolsCALC2
Entrez797
HUGO1438
OMIM114160
RefSeqNM_000728
UniProtP10092
Other data
LocusChr. 11 p14.2-p12

Calcitonin gene-related peptide (CGRP) is a member of the calcitonin family of peptides, which in humans exists in two forms, α-CGRP and β-CGRP. α-CGRP is a 37-amino acid peptide and is formed from the alternative splicing[1] of the calcitonin/CGRP gene located on chromosome 11. The less-studied β-CGRP differs in three amino acids (in humans) and is encoded in a separate gene in the same vicinity.[2]

Function

CGRP is produced in both peripheral and central neurons.[3] It is a potent peptide vasodilator and can function in the transmission of nociception.[4][5] In the spinal cord, the function and expression of CGRP may differ depending on the location of synthesis. CGRP is derived mainly from the cell bodies of motor neurons when synthesized in the ventral horn of the spinal cord and may contribute to the regeneration of nervous tissue after injury. Conversely, CGRP is derived from dorsal root ganglion when synthesized in the dorsal horn of the spinal cord and may be linked to the transmission of pain.[6] In the trigeminal vascular system, the cell bodies on the trigeminal ganglion are the main source of CGRP. CGRP is thought to play a role in cardiovascular homeostasis and nociception.

Receptors

CGRP mediates its effects through a heteromeric receptor composed of a G protein-coupled receptor called calcitonin receptor-like receptor (CALCRL) and a receptor activity-modifying protein (RAMP1).[7] CGRP receptors are found throughout the body, suggesting that the protein may modulate a variety of physiological functions in all major systems (e.g., respiratory, endocrine, gastrointestinal, immune, and cardiovascular).[8] The extracellular loop number 2 is fundamental for ligand induced activation, with key interactions of R274/Y278/D280/W283.[9]

Regulation

Regulation of the calcitonin gene-related peptide (CGRP) gene is in part controlled by the expression of the mitogen-activated protein kinases (MAPK) signaling pathway,[10] cytokines such as TNFα [11] and iNOS.[12]

5HT1 receptor agonists, such as sumatriptan, increase intracellular calcium, which cause decreases in CGRP promoter activity.[10]

Research

Increased levels of CGRP have been reported in migraine and temporomandibular joint disorder patients as well as a variety of other diseases such as cardiac failure, hypertension, and sepsis.[13][14][15][16][17][18]

There is mounting evidence to suggest that CGRP may be beneficial in preventing the development of hypertension and cardiovascular pathologies associated with hypertension.[19] Prophylactic therapy with calcitonin gene‐related peptides (CGRPs) may have unknown fertility consequences for women of child bearing age. This is of particular concern, as females (16.6%) are more genetically predisposed than males (7.5%) to endure this debilitative health condition.[20]

Preclinical evidence suggests that, during a migraine, activated primary sensory neurons (meningeal nociceptors) in the trigeminal ganglion release CGRP from their peripherally projecting nerve endings located within the meninges.[21] This CGRP then binds to and activates CGRP receptors located around meningeal vessels, causing vasodilation, mast cell degranulation, and plasma extravasation.[8][21][22][23] Human observations have further implicated the role of CGRP in the pathophysiology of migraine. Activation of primary sensory neurons in the trigeminal vascular system in humans can cause the release of CGRP. During some migraine attacks, increased concentrations of CGRP can be found in both saliva and plasma drawn from the external jugular vein.[8][21][22][23] Furthermore, intravenous administration of alpha-CGRP is able to induce headache in individuals susceptible to migraine.[24]

References

  1. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (July 1982). "Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products". Nature. 298 (5871): 240–4. doi:10.1038/298240a0. PMID 6283379.
  2. Rezaeian AH, Isokane T, Nishibori M, Chiba M, Hiraiwa N, Yoshizawa M, Yasue H (October 2009). "alphaCGRP and betaCGRP transcript amount in mouse tissues of various developmental stages and their tissue expression sites". Brain & Development. 31 (9): 682–93. doi:10.1016/j.braindev.2008.10.011. PMID 19062206.
  3. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983). "Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing". Nature. 304 (5922): 129–35. doi:10.1038/304129a0. PMID 6346105.
  4. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985). "Calcitonin gene-related peptide is a potent vasodilator". Nature. 313 (5997): 54–6. doi:10.1038/313054a0. PMID 3917554.
  5. McCulloch J, Uddman R, Kingman TA, Edvinsson L (August 1986). "Calcitonin gene-related peptide: functional role in cerebrovascular regulation". Proceedings of the National Academy of Sciences of the United States of America. 83 (15): 5731–5. doi:10.1073/pnas.83.15.5731. PMC 386363. PMID 3488550.
  6. Chen LJ, Zhang FG, Li J, Song HX, Zhou LB, Yao BC, Li F, Li WC (January 2010). "Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury". Journal of Clinical Neuroscience. 17 (1): 87–91. doi:10.1016/j.jocn.2009.03.042. PMID 19969463.
  7. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM (June 2002). "International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors". Pharmacological Reviews. 54 (2): 233–46. doi:10.1124/pr.54.2.233. PMID 12037140.
  8. 8.0 8.1 8.2 Arulmani U, Maassenvandenbrink A, Villalón CM, Saxena PR (October 2004). "Calcitonin gene-related peptide and its role in migraine pathophysiology". European Journal of Pharmacology. 500 (1–3): 315–30. doi:10.1016/j.ejphar.2004.07.035. PMID 15464043.
  9. Woolley MJ, Simms J, Mobarec JC, Reynolds CA, Poyner DR, Conner AC (October 2017). "Understanding the molecular functions of the second extracellular loop (ECL2) of the calcitonin gene-related peptide (CGRP) receptor using a comprehensive mutagenesis approach". Molecular and Cellular Endocrinology. 454: 39–49. doi:10.1016/j.mce.2017.05.034. PMID 28572046.
  10. 10.0 10.1 Durham PL, Russo AF (February 2003). "Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons". The Journal of Neuroscience. 23 (3): 807–15. PMID 12574409.
  11. Schäfers M, Svensson CI, Sommer C, Sorkin LS (April 2003). "Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons". The Journal of Neuroscience. 23 (7): 2517–21. PMID 12684435.
  12. Li J, Vause CV, Durham PL (February 2008). "Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells". Brain Research. 1196: 22–32. doi:10.1016/j.brainres.2007.12.028. PMC 2268710. PMID 18221935.
  13. Buzzi MG, Bonamini M, Moskowitz MA (1995). "Neurogenic model of migraine". Cephalalgia. 15 (4): 277–80. doi:10.1046/j.1468-2982.1995.1504277.x. PMID 7585923.
  14. Goto K, Miyauchi T, Homma S, Ohshima N (June 1992). "Calcitonin gene-related peptide in the regulation of cardiac function". Annals of the New York Academy of Sciences. 657: 194–203. doi:10.1111/j.1749-6632.1992.tb22768.x. PMID 1637085.
  15. Joyce CD, Fiscus RR, Wang X, Dries DJ, Morris RC, Prinz RA (December 1990). "Calcitonin gene-related peptide levels are elevated in patients with sepsis". Surgery. 108 (6): 1097–101. PMID 2247835.
  16. Edvinsson L, Goadsby PJ (October 1994). "Neuropeptides in migraine and cluster headache". Cephalalgia. 14 (5): 320–7. doi:10.1046/j.1468-2982.1994.1405320.x. PMID 7828188.
  17. Ferrari MD, Saxena PR (June 1993). "On serotonin and migraine: a clinical and pharmacological review". Cephalalgia. 13 (3): 151–65. doi:10.1046/j.1468-2982.1993.1303151.x. PMID 8395342.
  18. Goadsby PJ, Edvinsson L (June 1994). "Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies". Brain. 117 ( Pt 3) (3): 427–34. doi:10.1093/brain/117.3.427. PMID 7518321.
  19. Russell FA, King R, Smillie SJ, Kodji X, Brain SD (October 2014). "Calcitonin gene-related peptide: physiology and pathophysiology". Physiological Reviews. 94 (4): 1099–142. doi:10.1152/physrev.00034.2013. PMC 4187032. PMID 25287861. Retrieved 2015-04-17.
  20. Pellesi L, Guerzoni S, Pini LA (November 2017). "Spotlight on Anti-CGRP Monoclonal Antibodies in Migraine: The Clinical Evidence to Date". Clinical Pharmacology in Drug Development. 6 (6): 534–547. doi:10.1002/cpdd.345. PMC 5697612. PMID 28409893.
  21. 21.0 21.1 21.2 Durham PL (June 2006). "Calcitonin gene-related peptide (CGRP) and migraine". Headache. 46 Suppl 1 (Suppl 1): S3–8. doi:10.1111/j.1526-4610.2006.00483.x. PMC 3134175. PMID 16927957.
  22. 22.0 22.1 Goadsby PJ, Edvinsson L, Ekman R (August 1990). "Vasoactive peptide release in the extracerebral circulation of humans during migraine headache". Annals of Neurology. 28 (2): 183–7. doi:10.1002/ana.410280213. PMID 1699472.
  23. 23.0 23.1 Edvinsson L (2006). "Neuronal signal substances as biomarkers of migraine". Headache. 46 (7): 1088–94. doi:10.1111/j.1526-4610.2006.00502.x. PMID 16866713.
  24. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J (February 2002). "CGRP may play a causative role in migraine". Cephalalgia. 22 (1): 54–61. doi:10.1046/j.1468-2982.2002.00310.x. PMID 11993614.

External links