KCNK9: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
Matt Pijoan (talk | contribs)
m 1 revision imported
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Potassium channel subfamily K member 9''' is a [[protein]] that in humans is encoded by the ''KCNK9'' [[gene]].<ref name="pmid10734076">{{cite journal |vauthors=Kim Y, Bang H, Kim D | title = TASK-3, a new member of the tandem pore K(+) channel family | journal = J Biol Chem | volume = 275 | issue = 13 | pages = 9340–7 | date = May 2000 | pmid = 10734076 | pmc =  | doi = 10.1074/jbc.275.13.9340 }}</ref><ref name="pmid16382106">{{cite journal |vauthors=Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S | title = International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels | journal = Pharmacol Rev | volume = 57 | issue = 4 | pages = 527–40 | date = Dec 2005 | pmid = 16382106 | pmc = | doi = 10.1124/pr.57.4.12 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: KCNK9 potassium channel, subfamily K, member 9| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=51305| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box BotSee Template:PBB_Controls to Stop updates. -->
This gene encodes K<sub>2P</sub>9.1, one of the members of the superfamily of potassium channel proteins containing two pore-forming P domains. This open channel is highly expressed in the cerebellum. It is inhibited by extracellular acidification and [[arachidonic acid]], and strongly inhibited by phorbol 12-myristate 13-acetate.<ref name="entrez"/> Phorbol 12-myristate 13-acetate is also known as [[12-O-Tetradecanoylphorbol-13-acetate|12-''O''-tetradecanoylphorbol-13-acetate]] (TPA). TASK channels are additionally inhibited by hormones and transmitters that signal through GqPCRs. The resulting cellular depolarization is thought to regulate processes such as motor control and [[aldosterone]] secretion. Despite early controversy about the exact mechanism underlying this inhibition, the current view is that [[Diacyl glycerol|Diacyl-glycerol]], produced by the breakdown of [[Phosphatidylinositol 4,5-bisphosphate|Phosphatidylinositol-4,5-bis-phosphate]] by [[Phospholipase C|Phospholipase Cβ]] causes channel closure. <ref>{{Cite journal|last=Wilke|first=Bettina U.|last2=Lindner|first2=Moritz|last3=Greifenberg|first3=Lea|last4=Albus|first4=Alexandra|last5=Kronimus|first5=Yannick|last6=Bünemann|first6=Moritz|last7=Leitner|first7=Michael G.|last8=Oliver|first8=Dominik|date=2014-11-25|title=Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors|url=http://www.nature.com/articles/ncomms6540|journal=Nature Communications|language=En|volume=5|issue=1|doi=10.1038/ncomms6540|issn=2041-1723}}</ref>
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Potassium channel, subfamily K, member 9
| HGNCid = 6283
| Symbol = KCNK9
| AltSymbols =; K2p9.1; KT3.2; MGC138268; MGC138270; TASK-3; TASK3
| OMIM = 605874
| ECnumber = 
| Homologene = 56758
| MGIid = 3521816
| GeneAtlas_image1 = PBB_GE_KCNK9_gnf1h00252_at_tn.png
| Function = {{GNF_GO|id=GO:0005244 |text = voltage-gated ion channel activity}} {{GNF_GO|id=GO:0005267 |text = potassium channel activity}} {{GNF_GO|id=GO:0030955 |text = potassium ion binding}}
| Component = {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0006811 |text = ion transport}} {{GNF_GO|id=GO:0006813 |text = potassium ion transport}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 51305
    | Hs_Ensembl = ENSG00000169427
    | Hs_RefseqProtein = NP_057685
    | Hs_RefseqmRNA = NM_016601
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 8
    | Hs_GenLoc_start = 140693986
    | Hs_GenLoc_end = 140784481
    | Hs_Uniprot = Q9NPC2
    | Mm_EntrezGene = 223604
    | Mm_Ensembl = ENSMUSG00000036760
    | Mm_RefseqmRNA = NM_001033876
    | Mm_RefseqProtein = NP_001029048
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 15
    | Mm_GenLoc_start = 72339375
    | Mm_GenLoc_end = 72373535
    | Mm_Uniprot = Q3LS21
  }}
}}
'''Potassium channel, subfamily K, member 9''', also known as '''KCNK9''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: KCNK9 potassium channel, subfamily K, member 9| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=51305| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
==Expression==
{{PBB_Summary
 
| section_title =  
The KCNK9 gene is expressed as an ion channel more commonly known as TASK 3. This channel has a varied pattern of expression. TASK 3 is coexpressed with TASK 1 ([[KCNK3]]) in the cerebellar granule cells, locus coeruleus, motor neurons, pontine nuclei, some cells in the neocortex, habenula, olfactory bulb granule cells, and cells in the external plexiform layer of the olfactory bulb.<ref>{{cite journal |vauthors=Bayliss DA, Sirois JE, Talley EM | title = The TASK family: two-pore domain background K+ channels. | journal = Molecular interventions | volume = 3 | issue = 4 | pages = 205–19 | date = June 2003 | pmid = 14993448 | doi = 10.1124/mi.3.4.205 }}</ref> TASK-3 channels are also expressed in the hippocampus; both on pyramidal cells and interneurons.<ref>{{cite journal |vauthors=Torborg CL, Berg AP, Jeffries BW, Bayliss DA, McBain CJ | title = TASK-like conductances are present within hippocampal CA1 stratum oriens interneuron subpopulations. | journal = The Journal of Neuroscience | volume = 26 | issue = 28 | pages = 7362–7 | date = Jul 12, 2006 | pmid = 16837582 | doi = 10.1523/jneurosci.1257-06.2006 }}</ref> It is thought that these channels may form heterodimers where their expressions co-localise.<ref>{{cite journal |vauthors=Berg AP, Talley EM, Manger JP, Bayliss DA | title = Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. | journal = The Journal of Neuroscience | volume = 24 | issue = 30 | pages = 6693–702 | date = Jul 28, 2004 | pmid = 15282272 | doi = 10.1523/jneurosci.1408-04.2004 }}</ref><ref>{{cite journal |vauthors=Kang D, Han J, Talley EM, Bayliss DA, Kim D | title = Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. | journal = The Journal of Physiology | volume = 554 | issue = Pt 1 | pages = 64–77 | date = Jan 1, 2004 | pmid = 14678492 | doi = 10.1113/jphysiol.2003.054387 | pmc=1664745}}</ref>
| summary_text = This gene encodes one of the members of the superfamily of potassium channel proteins containing two pore-forming P domains. This open channel is highly expressed in the cerebellum. It is inhibited by extracellular acidification and arachidonic acid, and strongly inhibited by phorbol 12-myristate 13-acetate.<ref name="entrez">{{cite web | title = Entrez Gene: KCNK9 potassium channel, subfamily K, member 9| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=51305| accessdate = }}</ref>
 
}}
==Function==
 
Mice in which the TASK-3 gene has been deleted have reduced sensitivity to inhalation anaesthetics, exaggerated nocturnal activity and cognitive deficits as well as significantly increased appetite and weight gain.<ref>{{cite journal |vauthors=Linden AM, Aller MI, Leppä E, Rosenberg PH, Wisden W, Korpi ER | title = K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands. | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 327 | issue = 1 | pages = 277–86 | date = October 2008 | pmid = 18660435 | doi = 10.1124/jpet.108.142083 }}</ref><ref name="Pang 17546–51">{{cite journal |vauthors=Pang DS, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG, Franks NP | title = An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 106 | issue = 41 | pages = 17546–51 | date = Oct 13, 2009 | pmid = 19805135 | doi = 10.1073/pnas.0907228106 | pmc=2751655| url = http://www.zora.uzh.ch/32041/2/Pang_PNAS_2009_V.pdf }}</ref> A role for TASK-3 channels in neuronal network oscillations has also been described: TASK-3 knockout mice lack the atropine-sensitive halothane-induced theta oscillation (4–7&nbsp;Hz) from the hippocampus and are unable to maintain theta oscillations during rapid eye movement (REM) sleep.<ref name="Pang 17546–51"/>
== Interactive pathway map ==
{{NicotineDopaminergicActivity_WP1602|highlight=KCNK9}}


==See also==
==See also==
Line 58: Line 18:


==References==
==References==
{{reflist|2}}
{{reflist|35em}}


==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin|35em}}
{{PBB_Further_reading
*{{cite journal |vauthors=Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N | title = Potassium leak channels and the KCNK family of two-P-domain subunits. | journal = Nat. Rev. Neurosci. | volume = 2 | issue = 3 | pages = 175–84 | year = 2001 | pmid = 11256078 | doi = 10.1038/35058574 }}
| citations =
*{{cite journal |vauthors=Rajan S, Wischmeyer E, Xin Liu G, Preisig-Müller R, Daut J, Karschin A, Derst C | title = TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. | journal = J. Biol. Chem. | volume = 275 | issue = 22 | pages = 16650–7 | year = 2000 | pmid = 10747866 | doi = 10.1074/jbc.M000030200 }}
*{{cite journal | author=Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N |title=Potassium leak channels and the KCNK family of two-P-domain subunits. |journal=Nat. Rev. Neurosci. |volume=2 |issue= 3 |pages= 175-84 |year= 2001 |pmid= 11256078 |doi=  }}
*{{cite journal |vauthors=Chapman CG, Meadows HJ, Godden RJ, Campbell DA, Duckworth M, Kelsell RE, Murdock PR, Randall AD, Rennie GI, Gloger IS | title = Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. | journal = Brain Res. Mol. Brain Res. | volume = 82 | issue = 1–2 | pages = 74–83 | year = 2001 | pmid = 11042359 | doi = 10.1016/S0169-328X(00)00183-2 }}
*{{cite journal  | author=Goldstein SA, Bayliss DA, Kim D, ''et al.'' |title=International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. |journal=Pharmacol. Rev. |volume=57 |issue= 4 |pages= 527-40 |year= 2006 |pmid= 16382106 |doi= 10.1124/pr.57.4.12 }}
*{{cite journal |vauthors=Vega-Saenz de Miera E, Lau DH, Zhadina M, Pountney D, Coetzee WA, Rudy B | title = KT3.2 and KT3.3, two novel human two-pore K(+) channels closely related to TASK-1 | journal = J. Neurophysiol. | volume = 86 | issue = 1 | pages = 130–42 | year = 2001 | pmid = 11431495 | doi =  }}
*{{cite journal | author=Kim Y, Bang H, Kim D |title=TASK-3, a new member of the tandem pore K(+) channel family. |journal=J. Biol. Chem. |volume=275 |issue= 13 |pages= 9340-7 |year= 2000 |pmid= 10734076 |doi=  }}
*{{cite journal |vauthors=Talley EM, Bayliss DA | title = Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action | journal = J. Biol. Chem. | volume = 277 | issue = 20 | pages = 17733–42 | year = 2002 | pmid = 11886861 | doi = 10.1074/jbc.M200502200 }}
*{{cite journal  | author=Rajan S, Wischmeyer E, Xin Liu G, ''et al.'' |title=TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. |journal=J. Biol. Chem. |volume=275 |issue= 22 |pages= 16650-7 |year= 2000 |pmid= 10747866 |doi= 10.1074/jbc.M000030200 }}
*{{cite journal |vauthors=Rajan S, Preisig-Müller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthörl G, Derst C, Karschin A, Daut J | title = Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3 | journal = J. Physiol. | volume = 545 | issue = Pt 1 | pages = 13–26 | year = 2003 | pmid = 12433946 | pmc = 2290646 | doi = 10.1113/jphysiol.2002.027052 }}
*{{cite journal | author=Chapman CG, Meadows HJ, Godden RJ, ''et al.'' |title=Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. |journal=Brain Res. Mol. Brain Res. |volume=82 |issue= 1-2 |pages= 74-83 |year= 2001 |pmid= 11042359 |doi= }}
*{{cite journal |vauthors=Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KC, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S | title = Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene | journal = Cancer Cell | volume = 3 | issue = 3 | pages = 297–302 | year = 2003 | pmid = 12676587 | doi = 10.1016/S1535-6108(03)00054-0 }}
*{{cite journal | author=Vega-Saenz de Miera E, Lau DH, Zhadina M, ''et al.'' |title=KT3.2 and KT3.3, two novel human two-pore K(+) channels closely related to TASK-1. |journal=J. Neurophysiol. |volume=86 |issue= 1 |pages= 130-42 |year= 2001 |pmid= 11431495 |doi=  }}
*{{cite journal |vauthors=Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T | title = Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 100 | issue = 13 | pages = 7803–7 | year = 2003 | pmid = 12782791 | pmc = 164668 | doi = 10.1073/pnas.1232448100 }}
*{{cite journal | author=Talley EM, Bayliss DA |title=Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. |journal=J. Biol. Chem. |volume=277 |issue= 20 |pages= 17733-42 |year= 2002 |pmid= 11886861 |doi= 10.1074/jbc.M200502200 }}
*{{cite journal |vauthors=Rusznák Z, Pocsai K, Kovács I, Pór A, Pál B, Bíró T, Szücs G | title = Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum | journal = Cell. Mol. Life Sci. | volume = 61 | issue = 12 | pages = 1532–42 | year = 2004 | pmid = 15197476 | doi = 10.1007/s00018-004-4082-3 }}
*{{cite journal | author=Rajan S, Preisig-Müller R, Wischmeyer E, ''et al.'' |title=Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. |journal=J. Physiol. (Lond.) |volume=545 |issue= Pt 1 |pages= 13-26 |year= 2003 |pmid= 12433946 |doi=  }}
*{{cite journal |vauthors=Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A | title = Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc | journal = J. Physiol. | volume = 560 | issue = Pt 1 | pages = 51–62 | year = 2005 | pmid = 15284350 | pmc = 1665210 | doi = 10.1113/jphysiol.2004.070292 }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal |vauthors=Kim CJ, Cho YG, Jeong SW, Kim YS, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY, Park WS | title = Altered expression of KCNK9 in colorectal cancers | journal = APMIS | volume = 112 | issue = 9 | pages = 588–94 | year = 2005 | pmid = 15601307 | doi = 10.1111/j.1600-0463.2004.apm1120905.x }}
*{{cite journal | author=Mu D, Chen L, Zhang X, ''et al.'' |title=Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. |journal=Cancer Cell |volume=3 |issue= 3 |pages= 297-302 |year= 2003 |pmid= 12676587 |doi= }}
*{{cite journal |vauthors=Pocsai K, Kosztka L, Bakondi G, Gönczi M, Fodor J, Dienes B, Szentesi P, Kovács I, Feniger-Barish R, Kopf E, Zharhary D, Szucs G, Csernoch L, Rusznák Z | title = Melanoma cells exhibit strong intracellular TASK-3-specific immunopositivity in both tissue sections and cell culture | journal = Cell. Mol. Life Sci. | volume = 63 | issue = 19–20 | pages = 2364–76 | year = 2006 | pmid = 17013562 | doi = 10.1007/s00018-006-6166-8 }}
*{{cite journal | author=Pei L, Wiser O, Slavin A, ''et al.'' |title=Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue= 13 |pages= 7803-7 |year= 2003 |pmid= 12782791 |doi= 10.1073/pnas.1232448100 }}
*{{cite journal |vauthors=Zuzarte M, Rinné S, Schlichthörl G, Schubert A, Daut J, Preisig-Müller R | title = A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3 | journal = Traffic | volume = 8 | issue = 8 | pages = 1093–100 | year = 2007 | pmid = 17547699 | doi = 10.1111/j.1600-0854.2007.00593.x }}
*{{cite journal | author=Rusznák Z, Pocsai K, Kovács I, ''et al.'' |title=Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum. |journal=Cell. Mol. Life Sci. |volume=61 |issue= 12 |pages= 1532-42 |year= 2004 |pmid= 15197476 |doi= 10.1007/s00018-004-4082-3 }}
*{{cite journal | author=Clarke CE, Veale EL, Green PJ, ''et al.'' |title=Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. |journal=J. Physiol. (Lond.) |volume=560 |issue= Pt 1 |pages= 51-62 |year= 2005 |pmid= 15284350 |doi= 10.1113/jphysiol.2004.070292 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | author=Kim CJ, Cho YG, Jeong SW, ''et al.'' |title=Altered expression of KCNK9 in colorectal cancers. |journal=APMIS |volume=112 |issue= 9 |pages= 588-94 |year= 2005 |pmid= 15601307 |doi= 10.1111/j.1600-0463.2004.apm1120905.x }}
*{{cite journal | author=Pocsai K, Kosztka L, Bakondi G, ''et al.'' |title=Melanoma cells exhibit strong intracellular TASK-3-specific immunopositivity in both tissue sections and cell culture. |journal=Cell. Mol. Life Sci. |volume=63 |issue= 19-20 |pages= 2364-76 |year= 2006 |pmid= 17013562 |doi= 10.1007/s00018-006-6166-8 }}
*{{cite journal | author=Zuzarte M, Rinné S, Schlichthörl G, ''et al.'' |title=A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3. |journal=Traffic |volume=8 |issue= 8 |pages= 1093-100 |year= 2007 |pmid= 17547699 |doi= 10.1111/j.1600-0854.2007.00593.x }}
}}
{{refend}}
{{refend}}


Line 87: Line 40:
* {{MeshName|KCNK9+protein,+human}}
* {{MeshName|KCNK9+protein,+human}}


{{membrane-protein-stub}}
{{NLM content}}
{{NLM content}}
{{Ion channels}}
{{Ion channels|g3}}
 
[[Category:Ion channels]]
[[Category:Ion channels]]
{{WikiDoc Sources}}

Latest revision as of 08:44, 10 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Potassium channel subfamily K member 9 is a protein that in humans is encoded by the KCNK9 gene.[1][2][3]

This gene encodes K2P9.1, one of the members of the superfamily of potassium channel proteins containing two pore-forming P domains. This open channel is highly expressed in the cerebellum. It is inhibited by extracellular acidification and arachidonic acid, and strongly inhibited by phorbol 12-myristate 13-acetate.[3] Phorbol 12-myristate 13-acetate is also known as 12-O-tetradecanoylphorbol-13-acetate (TPA). TASK channels are additionally inhibited by hormones and transmitters that signal through GqPCRs. The resulting cellular depolarization is thought to regulate processes such as motor control and aldosterone secretion. Despite early controversy about the exact mechanism underlying this inhibition, the current view is that Diacyl-glycerol, produced by the breakdown of Phosphatidylinositol-4,5-bis-phosphate by Phospholipase Cβ causes channel closure. [4]

Expression

The KCNK9 gene is expressed as an ion channel more commonly known as TASK 3. This channel has a varied pattern of expression. TASK 3 is coexpressed with TASK 1 (KCNK3) in the cerebellar granule cells, locus coeruleus, motor neurons, pontine nuclei, some cells in the neocortex, habenula, olfactory bulb granule cells, and cells in the external plexiform layer of the olfactory bulb.[5] TASK-3 channels are also expressed in the hippocampus; both on pyramidal cells and interneurons.[6] It is thought that these channels may form heterodimers where their expressions co-localise.[7][8]

Function

Mice in which the TASK-3 gene has been deleted have reduced sensitivity to inhalation anaesthetics, exaggerated nocturnal activity and cognitive deficits as well as significantly increased appetite and weight gain.[9][10] A role for TASK-3 channels in neuronal network oscillations has also been described: TASK-3 knockout mice lack the atropine-sensitive halothane-induced theta oscillation (4–7 Hz) from the hippocampus and are unable to maintain theta oscillations during rapid eye movement (REM) sleep.[10]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
<imagemap> Image:NicotineDopaminergic_WP1602.png
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
<imagemap> Image:NicotineDopaminergic_WP1602.png
|{{{bSize}}}px|alt=Nicotine Activity on Dopaminergic Neurons edit]]
Nicotine Activity on Dopaminergic Neurons edit
  1. The interactive pathway map can be edited at WikiPathways: "NicotineDopaminergic_WP1602".

See also

References

  1. Kim Y, Bang H, Kim D (May 2000). "TASK-3, a new member of the tandem pore K(+) channel family". J Biol Chem. 275 (13): 9340–7. doi:10.1074/jbc.275.13.9340. PMID 10734076.
  2. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (Dec 2005). "International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels". Pharmacol Rev. 57 (4): 527–40. doi:10.1124/pr.57.4.12. PMID 16382106.
  3. 3.0 3.1 "Entrez Gene: KCNK9 potassium channel, subfamily K, member 9".
  4. Wilke, Bettina U.; Lindner, Moritz; Greifenberg, Lea; Albus, Alexandra; Kronimus, Yannick; Bünemann, Moritz; Leitner, Michael G.; Oliver, Dominik (2014-11-25). "Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors". Nature Communications. 5 (1). doi:10.1038/ncomms6540. ISSN 2041-1723.
  5. Bayliss DA, Sirois JE, Talley EM (June 2003). "The TASK family: two-pore domain background K+ channels". Molecular interventions. 3 (4): 205–19. doi:10.1124/mi.3.4.205. PMID 14993448.
  6. Torborg CL, Berg AP, Jeffries BW, Bayliss DA, McBain CJ (Jul 12, 2006). "TASK-like conductances are present within hippocampal CA1 stratum oriens interneuron subpopulations". The Journal of Neuroscience. 26 (28): 7362–7. doi:10.1523/jneurosci.1257-06.2006. PMID 16837582.
  7. Berg AP, Talley EM, Manger JP, Bayliss DA (Jul 28, 2004). "Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits". The Journal of Neuroscience. 24 (30): 6693–702. doi:10.1523/jneurosci.1408-04.2004. PMID 15282272.
  8. Kang D, Han J, Talley EM, Bayliss DA, Kim D (Jan 1, 2004). "Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells". The Journal of Physiology. 554 (Pt 1): 64–77. doi:10.1113/jphysiol.2003.054387. PMC 1664745. PMID 14678492.
  9. Linden AM, Aller MI, Leppä E, Rosenberg PH, Wisden W, Korpi ER (October 2008). "K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands". The Journal of Pharmacology and Experimental Therapeutics. 327 (1): 277–86. doi:10.1124/jpet.108.142083. PMID 18660435.
  10. 10.0 10.1 Pang DS, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG, Franks NP (Oct 13, 2009). "An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 106 (41): 17546–51. doi:10.1073/pnas.0907228106. PMC 2751655. PMID 19805135.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.