KCNN2

Revision as of 18:50, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2
File:PBB Protein KCNN2 image.jpg
PDB rendering based on 1g4y.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols KCNN2 ; KCa2.2; SK2; SKCA2; hSK2
External IDs Template:OMIM5 Template:MGI HomoloGene23150
RNA expression pattern
File:PBB GE KCNN2 220116 at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2, also known as KCNN2, is a human gene.[1]

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The protein encoded by this gene is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. The encoded protein is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This gene is a member of the KCNN family of potassium channel genes. Two transcript variants encoding different isoforms have been found for this gene.[1]

See also

References

  1. 1.0 1.1 "Entrez Gene: KCNN2 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2".

Further reading

  • Wei AD, Gutman GA, Aldrich R; et al. (2006). "International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels". Pharmacol. Rev. 57 (4): 463–72. doi:10.1124/pr.57.4.9. PMID 16382103.
  • Jäger H, Adelman JP, Grissmer S (2000). "SK2 encodes the apamin-sensitive Ca(2+)-activated K(+) channels in the human leukemic T cell line, Jurkat". FEBS Lett. 469 (2–3): 196–202. PMID 10713270.
  • Liu QH, Williams DA, McManus C; et al. (2000). "HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation". Proc. Natl. Acad. Sci. U.S.A. 97 (9): 4832–7. doi:10.1073/pnas.090521697. PMID 10758170.
  • Desai R, Peretz A, Idelson H; et al. (2001). "Ca2+-activated K+ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization". J. Biol. Chem. 275 (51): 39954–63. doi:10.1074/jbc.M001562200. PMID 10991935.
  • Rimini R, Rimland JM, Terstappen GC (2001). "Quantitative expression analysis of the small conductance calcium-activated potassium channels, SK1, SK2 and SK3, in human brain". Brain Res. Mol. Brain Res. 85 (1–2): 218–20. PMID 11146124.
  • Schumacher MA, Rivard AF, Bächinger HP, Adelman JP (2001). "Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin". Nature. 410 (6832): 1120–4. doi:10.1038/35074145. PMID 11323678.
  • Miller MJ, Rauer H, Tomita H; et al. (2001). "Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia". J. Biol. Chem. 276 (30): 27753–6. doi:10.1074/jbc.C100221200. PMID 11395478.
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.
  • Piotrowska AP, Solari V, Puri P (2003). "Distribution of Ca2+-activated K channels, SK2 and SK3, in the normal and Hirschsprung's disease bowel". J. Pediatr. Surg. 38 (6): 978–83. PMID 12778407.
  • Xu Y, Tuteja D, Zhang Z; et al. (2004). "Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts". J. Biol. Chem. 278 (49): 49085–94. doi:10.1074/jbc.M307508200. PMID 13679367.
  • Ota T, Suzuki Y, Nishikawa T; et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
  • Feranchak AP, Doctor RB, Troetsch M; et al. (2004). "Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels". Gastroenterology. 127 (3): 903–13. PMID 15362045.
  • Tajima N, Schönherr K, Niedling S; et al. (2006). "Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1alpha and the von Hippel-Lindau protein". J. Physiol. (Lond.). 571 (Pt 2): 349–59. doi:10.1113/jphysiol.2005.096818. PMID 16396931.
  • Lu L, Zhang Q, Timofeyev V; et al. (2007). "Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2". Circ. Res. 100 (1): 112–20. doi:10.1161/01.RES.0000253095.44186.72. PMID 17110593.
  • Morimoto T, Ohya S, Hayashi H; et al. (2007). "Cell-cycle-dependent regulation of Ca2+-activated K+ channel in Jurkat T-lymphocyte". J. Pharmacol. Sci. 104 (1): 94–8. PMID 17452806.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Template:WikiDoc Sources