WNK lysine deficient protein kinase 1, also known as WNK1, is an enzyme that in humans is encoded by the WNK1gene.[1] The human gene is located on short arm of chromosome 12 (12p13.3).
WNK1 is also known as Human Accelerated Region 5. WNK1 may have played a key role in differentiating Humans from Apes.
The WNK1 protein is composed of 2382 amino acids (molecular weight 230 kDa). The protein contains a small N-terminaldomain followed by the kinase domain and a long C-terminal tail. The kinase domain has some similarity to the MEKK protein kinase family.
The protein appears to be part of the ERK5MAP kinase pathway upstream of MEKK2 / MEKK3 and to function as a tetramer. It selectively binds to and phosphorylates synaptotagmin 2 (SYT2) within its calcium-binding C2 domains. It activates the serum- and glucocorticoid-inducible protein kinase SGK1, leading to activation of the epithelial sodium channel. It along with WNK4 stimulates clathrin-dependent endocytosis of renal outer medullar potassium 1 (ROMK1). It (and WNK4) interactes with intersectin (ITSN1, ITSN2).
Hart GW, Haltiwanger RS, Holt GD, Kelly WG (1989). "Nucleoplasmic and cytoplasmic glycoproteins". Ciba Found. Symp. 145: 102–12, discussion 112–8. PMID2507249.
Nakajima D, Okazaki N, Yamakawa H, et al. (2003). "Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones". DNA Res. 9 (3): 99–106. doi:10.1093/dnares/9.3.99. PMID12168954.
Xu BE, Lee BH, Min X, et al. (2005). "WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension". Cell Res. 15 (1): 6–10. doi:10.1038/sj.cr.7290256. PMID15686619.
Subramanya AR, Yang CL, McCormick JA, Ellison DH (2006). "WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron". Kidney Int. 70 (4): 630–4. doi:10.1038/sj.ki.5001634. PMID16820787.
Huang CL, Kuo E (2007). "Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension". Nature Clinical Practice Nephrology. 3 (11): 623–30. doi:10.1038/ncpneph0638. PMID17957199.
Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Nagase T, Ishikawa K, Nakajima D, et al. (1997). "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Res. 4 (2): 141–50. doi:10.1093/dnares/4.2.141. PMID9205841.
Moore TM, Garg R, Johnson C, et al. (2000). "PSK, a novel STE20-like kinase derived from prostatic carcinoma that activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and regulates actin cytoskeletal organization". J. Biol. Chem. 275 (6): 4311–22. doi:10.1074/jbc.275.6.4311. PMID10660600.
Wilson FH, Disse-Nicodème S, Choate KA, et al. (2001). "Human hypertension caused by mutations in WNK kinases". Science. 293 (5532): 1107–12. doi:10.1126/science.1062844. PMID11498583.
Veríssimo F, Jordan P (2001). "WNK kinases, a novel protein kinase subfamily in multi-cellular organisms". Oncogene. 20 (39): 5562–9. doi:10.1038/sj.onc.1204726. PMID11571656.
Xu BE, Min X, Stippec S, et al. (2003). "Regulation of WNK1 by an autoinhibitory domain and autophosphorylation". J. Biol. Chem. 277 (50): 48456–62. doi:10.1074/jbc.M207917200. PMID12374799.
Xu BE, Stippec S, Lenertz L, et al. (2004). "WNK1 activates ERK5 by an MEKK2/3-dependent mechanism". J. Biol. Chem. 279 (9): 7826–31. doi:10.1074/jbc.M313465200. PMID14681216.
Fu GK, Wang JT, Yang J, et al. (2005). "Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes". Genomics. 84 (1): 205–10. doi:10.1016/j.ygeno.2004.01.011. PMID15203218.
Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Curr. Biol. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID15324660.