The CLCN family of voltage-dependent chloride channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regulates the electric excitability of the skeletal muscle membrane. Mutations in this gene cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen).[1]
Chloride channel protein, skeletal muscle (CLCN1) is a protein that in humans is encoded by the CLCN1gene.[2] Mutations in this protein cause congenital myotonia.
CLCN1 is critical for the normal function of skeletal muscle cells. For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. Muscle contraction and relaxation are controlled by the flow of ions into and out of muscle cells. CLCN1 forms an ion channel that controls the flow of negatively charged chloride ions into these cells. The main function of this channel is to stabilize the cells' electrical charge, enabling muscles to contract normally.
In people with congenital myotonia due to a mutation in CLCN1, the ion channel admits too few chloride ions into the cell. This shortage of chloride ions causes prolonged muscle contractions, which are the hallmark of myotonia.
Hudson AJ, Ebers GC, Bulman DE (1995). "The skeletal muscle sodium and chloride channel diseases". Brain. 118 (2): 547–63. doi:10.1093/brain/118.2.547. PMID7735894.
Uchida S, Sasaki S, Marumo F (1996). "Chloride transport across kidney epithelia through CLC chloride channels". Nippon Jinzo Gakkai shi. 38 (7): 285–9. PMID8741388.
Fahlke C (2000). "Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations". Kidney Int. 57 (3): 780–6. doi:10.1046/j.1523-1755.2000.00915.x. PMID10720929.
Pusch M (2002). "Myotonia caused by mutations in the muscle chloride channel gene CLCN1". Hum. Mutat. 19 (4): 423–34. doi:10.1002/humu.10063. PMID11933197.
Colding-Jørgensen E (2005). "Phenotypic variability in myotonia congenita". Muscle Nerve. 32 (1): 19–34. doi:10.1002/mus.20295. PMID15786415.
Isobe M, Erikson J, Emanuel BS, et al. (1985). "Location of gene for beta subunit of human T-cell receptor at band 7q35, a region prone to rearrangements in T cells". Science. 228 (4699): 580–2. doi:10.1126/science.3983641. PMID3983641.
Lehmann-Horn F, Mailänder V, Heine R, George AL (1995). "Myotonia levior is a chloride channel disorder". Hum. Mol. Genet. 4 (8): 1397–402. doi:10.1093/hmg/4.8.1397. PMID7581380.
George AL, Sloan-Brown K, Fenichel GM, et al. (1995). "Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita". Hum. Mol. Genet. 3 (11): 2071–2. PMID7874130.
Lorenz C, Meyer-Kleine C, Steinmeyer K, et al. (1994). "Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia". Hum. Mol. Genet. 3 (6): 941–6. doi:10.1093/hmg/3.6.941. PMID7951242.
Heine R, George AL, Pika U, et al. (1995). "Proof of a non-functional muscle chloride channel in recessive myotonia congenita (Becker) by detection of a 4 base pair deletion". Hum. Mol. Genet. 3 (7): 1123–8. doi:10.1093/hmg/3.7.1123. PMID7981681.
George AL, Crackower MA, Abdalla JA, et al. (1995). "Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita)". Nat. Genet. 3 (4): 305–10. doi:10.1038/ng0493-305. PMID7981750.
Pusch M, Steinmeyer K, Koch MC, Jentsch TJ (1996). "Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel". Neuron. 15 (6): 1455–63. doi:10.1016/0896-6273(95)90023-3. PMID8845168.