B3GAT1: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1''' (B3GAT1) is an [[enzyme]] that in humans is encoded by the ''B3GAT1'' [[gene]], whose enzymatic activity creates the CD57 epitope on other cell surface proteins.<ref name="entrez">{{cite web | title = Entrez Gene: B3GAT1 beta-1,3-glucuronyltransferase 1 (glucuronosyltransferase P)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=27087| accessdate = }}</ref> In [[immunology]], the CD57 [[antigen]] (CD stands for [[cluster of differentiation]]) is also known as HNK1 (human natural killer-1) or LEU7. It is expressed as a carbohydrate [[epitope]] that contains a [[sulfoglucuronyl]] residue in several [[adhesion molecules]] of the [[nervous system]].<ref name="pmid10783264">{{cite journal | vauthors = Mitsumoto Y, Oka S, Sakuma H, Inazawa J, Kawasaki T | title = Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope | journal = Genomics | volume = 65 | issue = 2 | pages = 166–73 | date = Apr 2000 | pmid = 10783264 | doi = 10.1006/geno.2000.6152 }}</ref> | ||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
The protein encoded by this gene is a member of the glucuronyltransferase gene family. These enzymes exhibit strict acceptor specificity, recognizing nonreducing terminal sugars and their anomeric linkages. This gene product functions as the key enzyme in a glucuronyl transfer reaction during the biosynthesis of the carbohydrate epitope HNK-1 (human natural killer-1, also known as CD57 and LEU7). Alternate transcriptional splice variants have been characterized.<ref name="entrez" /> | |||
==Immunohistochemistry== | |||
= | In anatomical pathology, CD57 (immunostaining) is similar to CD56 for use in differentiating [[neuroendocrine tumors]] from others.<ref name = "Wick_2010">{{cite book | editor-last1 = Dabbs | editor-first1 = David J. | title = Diagnostic immunohistochemistry: theranostic and genomic applications | first = Mark R. | last = Wick | name-list-format = vanc | chapter = Chapter 11 – Immunohistology of the Mediastinum | date = 2010 | publisher = Saunders/Elsevier | location = Philadelphia, PA | isbn = 978-1-4160-5766-6 | pages = 345–6 | edition = 3rd | doi = 10.1016/B978-1-4160-5766-6.00015-7 }}</ref> Using [[immunohistochemistry]], CD57 molecule can be demonstrated in around 10 to 20% of [[lymphocyte]]s, as well as in some [[epithelium|epithelial]], neural, and [[medullary chromaffin cell|chromaffin cell]]s. Among [[lymphocytes]], CD57 positive cells are typically either [[T cell]]s or [[natural killer cell|NK cells]], and are most commonly found within the [[germinal center|germinal centre]]s of [[lymph node]]s, tonsils, and the spleen.<ref name=Leong>{{cite book | last1 = Leong | first1 = Anthony S.-Y. | last2 = Cooper | first2 = Kumarasen | last3 = Leong | first3 = F. Joel W.-M. | name-list-format = vanc | title = Manual of Diagnostic Antibodies for Immunohistology | date = 2003 | publisher = Greenwich Medical Media | location = London | isbn = 978-1-84110-100-2 | edition = 2nd | pages = 131–134 }}</ref> | ||
{{ | |||
== | There is an increase in the number of circulating CD57 positive cells in the blood of patients who have recently undergone organ or tissue transplants, especially of the bone marrow, and in patients with [[HIV]]. Increased CD57+ counts have also been reported in [[rheumatoid arthritis]] and [[Felty's syndrome]], among other conditions.<ref name=Leong/> | ||
[[Neoplasm|Neoplastic]] CD57 positive cells are seen in conditions as varied as [[large granular lymphocytic leukemia|large granular lymphocytic leukaemia]], [[small-cell carcinoma]], [[thyroid neoplasm|thyroid carcinoma]], and neural and [[carcinoid]] tumours. Although the antigen is particularly common in carcinoid tumours, it is found in such a wide range of other conditions that it is of less use in distinguishing these tumours from others than more specific markers such as [[chromogranin]] and [[neuron specific enolase|NSE]].<ref name=Leong/> | |||
| | |||
== References == | |||
{{reflist|}} | |||
{{clear}} | |||
*{{cite journal | == Further reading == | ||
*{{cite journal | {{refbegin|33em}} | ||
*{{cite journal | * {{cite journal | vauthors = Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA | title = A "double adaptor" method for improved shotgun library construction | journal = Analytical Biochemistry | volume = 236 | issue = 1 | pages = 107–13 | date = Apr 1996 | pmid = 8619474 | doi = 10.1006/abio.1996.0138 }} | ||
*{{cite journal | * {{cite journal | vauthors = Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA | title = Large-scale concatenation cDNA sequencing | journal = Genome Research | volume = 7 | issue = 4 | pages = 353–8 | date = Apr 1997 | pmid = 9110174 | pmc = 139146 | doi = 10.1101/gr.7.4.353 }} | ||
*{{cite journal | * {{cite journal | vauthors = Tone Y, Kitagawa H, Imiya K, Oka S, Kawasaki T, Sugahara K | title = Characterization of recombinant human glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans | journal = FEBS Letters | volume = 459 | issue = 3 | pages = 415–20 | date = Oct 1999 | pmid = 10526176 | doi = 10.1016/S0014-5793(99)01287-9 }} | ||
*{{cite journal | * {{cite journal | vauthors = Mitsumoto Y, Oka S, Sakuma H, Inazawa J, Kawasaki T | title = Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope | journal = Genomics | volume = 65 | issue = 2 | pages = 166–73 | date = Apr 2000 | pmid = 10783264 | doi = 10.1006/geno.2000.6152 }} | ||
*{{cite journal | * {{cite journal | vauthors = Pedersen LC, Tsuchida K, Kitagawa H, Sugahara K, Darden TA, Negishi M | title = Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I | journal = The Journal of Biological Chemistry | volume = 275 | issue = 44 | pages = 34580–5 | date = Nov 2000 | pmid = 10946001 | doi = 10.1074/jbc.M007399200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Cebo C, Durier V, Lagant P, Maes E, Florea D, Lefebvre T, Strecker G, Vergoten G, Zanetta JP | title = Function and molecular modeling of the interaction between human interleukin 6 and its HNK-1 oligosaccharide ligands | journal = The Journal of Biological Chemistry | volume = 277 | issue = 14 | pages = 12246–52 | date = Apr 2002 | pmid = 11788581 | doi = 10.1074/jbc.M106816200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Ouzzine M, Gulberti S, Levoin N, Netter P, Magdalou J, Fournel-Gigleux S | title = The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues | journal = The Journal of Biological Chemistry | volume = 277 | issue = 28 | pages = 25439–45 | date = Jul 2002 | pmid = 11986319 | doi = 10.1074/jbc.M201912200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA | title = Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells | journal = Blood | volume = 101 | issue = 7 | pages = 2711–20 | date = Apr 2003 | pmid = 12433688 | doi = 10.1182/blood-2002-07-2103 }} | ||
*{{cite journal | * {{cite journal | vauthors = Jirásek T, Hozák P, Mandys V | title = Different patterns of chromogranin A and Leu-7 (CD57) expression in gastrointestinal carcinoids: immunohistochemical and confocal laser scanning microscopy study | journal = Neoplasma | volume = 50 | issue = 1 | pages = 1–7 | year = 2003 | pmid = 12687271 | doi = }} | ||
*{{cite journal | * {{cite journal | vauthors = Jeffries AR, Mungall AJ, Dawson E, Halls K, Langford CF, Murray RM, Dunham I, Powell JF | title = beta-1,3-Glucuronyltransferase-1 gene implicated as a candidate for a schizophrenia-like psychosis through molecular analysis of a balanced translocation | journal = Molecular Psychiatry | volume = 8 | issue = 7 | pages = 654–63 | date = Jul 2003 | pmid = 12874601 | doi = 10.1038/sj.mp.4001382 }} | ||
*{{cite journal | * {{cite journal | vauthors = Chochi K, Ichikura T, Majima T, Kawabata T, Matsumoto A, Sugasawa H, Kawarabayashi N, Takayama E, Hiraide H, Seki S, Mochizuki H | title = The increase of CD57+ T cells in the peripheral blood and their impaired immune functions in patients with advanced gastric cancer | journal = Oncology Reports | volume = 10 | issue = 5 | pages = 1443–8 | year = 2004 | pmid = 12883721 | doi = 10.3892/or.10.5.1443 }} | ||
*{{cite journal | * {{cite journal | vauthors = Kakuda S, Shiba T, Ishiguro M, Tagawa H, Oka S, Kajihara Y, Kawasaki T, Wakatsuki S, Kato R | title = Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1 | journal = The Journal of Biological Chemistry | volume = 279 | issue = 21 | pages = 22693–703 | date = May 2004 | pmid = 14993226 | doi = 10.1074/jbc.M400622200 }} | ||
}} | * {{cite journal | vauthors = Matsubara K, Yura K, Hirata T, Nigami H, Harigaya H, Nozaki H, Fukaya T, Baba K | title = Acute lymphoblastic leukemia with coexpression of CD56 and CD57: case report | journal = Pediatric Hematology and Oncology | volume = 21 | issue = 7 | pages = 677–82 | year = 2005 | pmid = 15626024 | doi = 10.1080/08880010490501105 }} | ||
* {{cite journal | vauthors = Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP | title = Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57 | journal = Journal of Immunology | volume = 174 | issue = 10 | pages = 6088–94 | date = May 2005 | pmid = 15879103 | doi = 10.4049/jimmunol.174.10.6088 }} | |||
* {{cite journal | vauthors = Assouti M, Vynios DH, Anagnostides ST, Papadopoulos G, Georgakopoulos CD, Gartaganis SP | title = Collagen type IX and HNK-1 epitope in tears of patients with pseudoexfoliation syndrome | journal = Biochimica et Biophysica Acta | volume = 1762 | issue = 1 | pages = 54–8 | date = Jan 2006 | pmid = 16257185 | doi = 10.1016/j.bbadis.2005.09.005 }} | |||
* {{cite journal | vauthors = Barré L, Venkatesan N, Magdalou J, Netter P, Fournel-Gigleux S, Ouzzine M | title = Evidence of calcium-dependent pathway in the regulation of human beta1,3-glucuronosyltransferase-1 (GlcAT-I) gene expression: a key enzyme in proteoglycan synthesis | journal = FASEB Journal | volume = 20 | issue = 10 | pages = 1692–4 | date = Aug 2006 | pmid = 16807373 | doi = 10.1096/fj.05-5073fje }} | |||
* {{cite journal | vauthors = Sada-Ovalle I, Torre-Bouscoulet L, Valdez-Vázquez R, Martínez-Cairo S, Zenteno E, Lascurain R | title = Characterization of a cytotoxic CD57+ T cell subset from patients with pulmonary tuberculosis | journal = Clinical Immunology | volume = 121 | issue = 3 | pages = 314–23 | date = Dec 2006 | pmid = 17035093 | doi = 10.1016/j.clim.2006.08.011 }} | |||
{{refend}} | {{refend}} | ||
==External links== | == External links == | ||
* {{MeshName|CD57+Antigen}} | * {{MeshName|CD57+Antigen}} | ||
* {{UCSC gene info|B3GAT1}} | |||
{{ | {{PDB Gallery|geneid=27087}} | ||
{{Clusters of differentiation}} | {{Clusters of differentiation}} | ||
{{Clusters of differentiation by lineage}} | |||
{{Glycosyltransferases}} | |||
[[Category:Clusters of differentiation]] | [[Category:Clusters of differentiation]] | ||
Revision as of 02:23, 30 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 (B3GAT1) is an enzyme that in humans is encoded by the B3GAT1 gene, whose enzymatic activity creates the CD57 epitope on other cell surface proteins.[1] In immunology, the CD57 antigen (CD stands for cluster of differentiation) is also known as HNK1 (human natural killer-1) or LEU7. It is expressed as a carbohydrate epitope that contains a sulfoglucuronyl residue in several adhesion molecules of the nervous system.[2]
Function
The protein encoded by this gene is a member of the glucuronyltransferase gene family. These enzymes exhibit strict acceptor specificity, recognizing nonreducing terminal sugars and their anomeric linkages. This gene product functions as the key enzyme in a glucuronyl transfer reaction during the biosynthesis of the carbohydrate epitope HNK-1 (human natural killer-1, also known as CD57 and LEU7). Alternate transcriptional splice variants have been characterized.[1]
Immunohistochemistry
In anatomical pathology, CD57 (immunostaining) is similar to CD56 for use in differentiating neuroendocrine tumors from others.[3] Using immunohistochemistry, CD57 molecule can be demonstrated in around 10 to 20% of lymphocytes, as well as in some epithelial, neural, and chromaffin cells. Among lymphocytes, CD57 positive cells are typically either T cells or NK cells, and are most commonly found within the germinal centres of lymph nodes, tonsils, and the spleen.[4]
There is an increase in the number of circulating CD57 positive cells in the blood of patients who have recently undergone organ or tissue transplants, especially of the bone marrow, and in patients with HIV. Increased CD57+ counts have also been reported in rheumatoid arthritis and Felty's syndrome, among other conditions.[4]
Neoplastic CD57 positive cells are seen in conditions as varied as large granular lymphocytic leukaemia, small-cell carcinoma, thyroid carcinoma, and neural and carcinoid tumours. Although the antigen is particularly common in carcinoid tumours, it is found in such a wide range of other conditions that it is of less use in distinguishing these tumours from others than more specific markers such as chromogranin and NSE.[4]
References
- ↑ 1.0 1.1 "Entrez Gene: B3GAT1 beta-1,3-glucuronyltransferase 1 (glucuronosyltransferase P)".
- ↑ Mitsumoto Y, Oka S, Sakuma H, Inazawa J, Kawasaki T (Apr 2000). "Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope". Genomics. 65 (2): 166–73. doi:10.1006/geno.2000.6152. PMID 10783264.
- ↑ Wick MR (2010). "Chapter 11 – Immunohistology of the Mediastinum". In Dabbs DJ. Diagnostic immunohistochemistry: theranostic and genomic applications (3rd ed.). Philadelphia, PA: Saunders/Elsevier. pp. 345–6. doi:10.1016/B978-1-4160-5766-6.00015-7. ISBN 978-1-4160-5766-6.
- ↑ 4.0 4.1 4.2 Leong AS, Cooper K, Leong FJ (2003). Manual of Diagnostic Antibodies for Immunohistology (2nd ed.). London: Greenwich Medical Media. pp. 131–134. ISBN 978-1-84110-100-2.
Further reading
- Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (Apr 1996). "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (Apr 1997). "Large-scale concatenation cDNA sequencing". Genome Research. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Tone Y, Kitagawa H, Imiya K, Oka S, Kawasaki T, Sugahara K (Oct 1999). "Characterization of recombinant human glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans". FEBS Letters. 459 (3): 415–20. doi:10.1016/S0014-5793(99)01287-9. PMID 10526176.
- Mitsumoto Y, Oka S, Sakuma H, Inazawa J, Kawasaki T (Apr 2000). "Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope". Genomics. 65 (2): 166–73. doi:10.1006/geno.2000.6152. PMID 10783264.
- Pedersen LC, Tsuchida K, Kitagawa H, Sugahara K, Darden TA, Negishi M (Nov 2000). "Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I". The Journal of Biological Chemistry. 275 (44): 34580–5. doi:10.1074/jbc.M007399200. PMID 10946001.
- Cebo C, Durier V, Lagant P, Maes E, Florea D, Lefebvre T, Strecker G, Vergoten G, Zanetta JP (Apr 2002). "Function and molecular modeling of the interaction between human interleukin 6 and its HNK-1 oligosaccharide ligands". The Journal of Biological Chemistry. 277 (14): 12246–52. doi:10.1074/jbc.M106816200. PMID 11788581.
- Ouzzine M, Gulberti S, Levoin N, Netter P, Magdalou J, Fournel-Gigleux S (Jul 2002). "The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues". The Journal of Biological Chemistry. 277 (28): 25439–45. doi:10.1074/jbc.M201912200. PMID 11986319.
- Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (Apr 2003). "Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells". Blood. 101 (7): 2711–20. doi:10.1182/blood-2002-07-2103. PMID 12433688.
- Jirásek T, Hozák P, Mandys V (2003). "Different patterns of chromogranin A and Leu-7 (CD57) expression in gastrointestinal carcinoids: immunohistochemical and confocal laser scanning microscopy study". Neoplasma. 50 (1): 1–7. PMID 12687271.
- Jeffries AR, Mungall AJ, Dawson E, Halls K, Langford CF, Murray RM, Dunham I, Powell JF (Jul 2003). "beta-1,3-Glucuronyltransferase-1 gene implicated as a candidate for a schizophrenia-like psychosis through molecular analysis of a balanced translocation". Molecular Psychiatry. 8 (7): 654–63. doi:10.1038/sj.mp.4001382. PMID 12874601.
- Chochi K, Ichikura T, Majima T, Kawabata T, Matsumoto A, Sugasawa H, Kawarabayashi N, Takayama E, Hiraide H, Seki S, Mochizuki H (2004). "The increase of CD57+ T cells in the peripheral blood and their impaired immune functions in patients with advanced gastric cancer". Oncology Reports. 10 (5): 1443–8. doi:10.3892/or.10.5.1443. PMID 12883721.
- Kakuda S, Shiba T, Ishiguro M, Tagawa H, Oka S, Kajihara Y, Kawasaki T, Wakatsuki S, Kato R (May 2004). "Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1". The Journal of Biological Chemistry. 279 (21): 22693–703. doi:10.1074/jbc.M400622200. PMID 14993226.
- Matsubara K, Yura K, Hirata T, Nigami H, Harigaya H, Nozaki H, Fukaya T, Baba K (2005). "Acute lymphoblastic leukemia with coexpression of CD56 and CD57: case report". Pediatric Hematology and Oncology. 21 (7): 677–82. doi:10.1080/08880010490501105. PMID 15626024.
- Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP (May 2005). "Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57". Journal of Immunology. 174 (10): 6088–94. doi:10.4049/jimmunol.174.10.6088. PMID 15879103.
- Assouti M, Vynios DH, Anagnostides ST, Papadopoulos G, Georgakopoulos CD, Gartaganis SP (Jan 2006). "Collagen type IX and HNK-1 epitope in tears of patients with pseudoexfoliation syndrome". Biochimica et Biophysica Acta. 1762 (1): 54–8. doi:10.1016/j.bbadis.2005.09.005. PMID 16257185.
- Barré L, Venkatesan N, Magdalou J, Netter P, Fournel-Gigleux S, Ouzzine M (Aug 2006). "Evidence of calcium-dependent pathway in the regulation of human beta1,3-glucuronosyltransferase-1 (GlcAT-I) gene expression: a key enzyme in proteoglycan synthesis". FASEB Journal. 20 (10): 1692–4. doi:10.1096/fj.05-5073fje. PMID 16807373.
- Sada-Ovalle I, Torre-Bouscoulet L, Valdez-Vázquez R, Martínez-Cairo S, Zenteno E, Lascurain R (Dec 2006). "Characterization of a cytotoxic CD57+ T cell subset from patients with pulmonary tuberculosis". Clinical Immunology. 121 (3): 314–23. doi:10.1016/j.clim.2006.08.011. PMID 17035093.
External links
- CD57+Antigen at the US National Library of Medicine Medical Subject Headings (MeSH)
- Human B3GAT1 genome location and B3GAT1 gene details page in the UCSC Genome Browser.