CD82 (gene): Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:''CD82'' (gene)}} | |||
{{ | {{Infobox_gene}} | ||
'''CD82''' (Cluster of Differentiation 82) is a human [[protein]] encoded by the {{gene|CD82}} [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: CD82 CD82 molecule| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3732| accessdate = }}</ref> | |||
}} | |||
'''CD82''' (Cluster of Differentiation 82) is a human [[protein]] encoded by the {{gene|CD82}} [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: CD82 CD82 molecule| url = | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = This [[metastasis suppressor]] gene product is a membrane glycoprotein that is a member of the transmembrane 4 superfamily. Expression of this gene has been shown to be downregulated in tumor progression of human cancers and can be activated by p53 through a consensus binding sequence in the promoter. Its expression and that of p53 are strongly correlated, and the loss of expression of these two proteins is associated with poor survival for prostate cancer patients. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.<ref name="entrez" | | summary_text = This [[metastasis suppressor]] gene product is a membrane glycoprotein that is a member of the transmembrane 4 superfamily. Expression of this gene has been shown to be downregulated in tumor progression of human cancers and can be activated by p53 through a consensus binding sequence in the promoter. Its expression and that of p53 are strongly correlated, and the loss of expression of these two proteins is associated with poor survival for prostate cancer patients. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.<ref name="entrez" /> | ||
}} | }} | ||
==Interactions== | |||
CD82 (gene) has been shown to [[Protein-protein interaction|interact]] with [[CD19]],<ref name=pmid7636191>{{cite journal |last=Imai |first=T |author2=Kakizaki M|author3=Nishimura M|author4=Yoshie O |date=August 1995 |title=Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82 |journal=J. Immunol. |volume=155 |issue=3 |pages=1229–39 |publisher= |location = UNITED STATES| issn = 0022-1767| pmid = 7636191 | bibcode = | oclc =| id = | url = | language = | laysummary = | laysource = | laydate = | quote = }}</ref><ref name=pmid9804823>{{cite journal |doi=10.1074/jbc.273.46.30537 |last=Horváth |first=G |author2=Serru V|author3=Clay D|author4=Billard M|author5=Boucheix C|author6=Rubinstein E |date=November 1998 |title=CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82 |journal=J. Biol. Chem. |volume=273 |issue=46 |pages=30537–43 |publisher= |location = UNITED STATES| issn = 0021-9258| pmid = 9804823 | bibcode = | oclc =| id = | url = | language = | laysummary = | laysource = | laydate = | quote = }}</ref> [[CD63]]<ref name=pmid9759843>{{cite journal |last=Hammond |first=C |author2=Denzin L K|author3=Pan M|author4=Griffith J M|author5=Geuze H J|author6=Cresswell P |date=October 1998 |title=The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules |journal=J. Immunol. |volume=161 |issue=7 |pages=3282–91 |publisher= |location = UNITED STATES| issn = 0022-1767| pmid = 9759843 | bibcode = | oclc =| id = | url = | language = | laysummary = | laysource = | laydate = | quote = }}</ref> and [[CD234]]<ref>{{Cite journal|last = Hur|first = Jin|last2 = Choi|first2 = Jae-Il|last3 = Lee|first3 = Hwan|last4 = Nham|first4 = Pniel|last5 = Kim|first5 = Tae-Won|last6 = Chae|first6 = Cheong-Whan|last7 = Yun|first7 = Ji-Yeon|last8 = Kang|first8 = Jin-A.|last9 = Kang|first9 = Jeehoon|date = 2016-04-07|title = CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages|journal = Cell Stem Cell|volume = 18|issue = 4|pages = 508–521|doi = 10.1016/j.stem.2016.01.013|issn = 1875-9777|pmid = 26996598}}</ref> | |||
==See also== | ==See also== | ||
Line 58: | Line 16: | ||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
Line 64: | Line 22: | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | author=Baek SH |title=A novel link between SUMO modification and cancer metastasis. |journal=Cell Cycle |volume=5 |issue= 14 |pages= | *{{cite journal | author=Baek SH |title=A novel link between SUMO modification and cancer metastasis. |journal=Cell Cycle |volume=5 |issue= 14 |pages= 1492–5 |year= 2006 |pmid= 16861889 |doi=10.4161/cc.5.14.3008 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Imai T, Fukudome K, Takagi S |title=C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63. |journal=J. Immunol. |volume=149 |issue= 9 |pages= 2879–86 |year= 1992 |pmid= 1401919 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ichikawa T, Ichikawa Y, Dong J |title=Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. |journal=Cancer Res. |volume=52 |issue= 12 |pages= 3486–90 |year= 1992 |pmid= 1596907 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Gaugitsch HW, Hofer E, Huber NE |title=A new superfamily of lymphoid and melanoma cell proteins with extensive homology to Schistosoma mansoni antigen Sm23. |journal=Eur. J. Immunol. |volume=21 |issue= 2 |pages= 377–83 |year= 1991 |pmid= 1842498 |doi=10.1002/eji.1830210219 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ichikawa T, Ichikawa Y, Isaacs JT |title=Genetic factors and suppression of metastatic ability of prostatic cancer. |journal=Cancer Res. |volume=51 |issue= 14 |pages= 3788–92 |year= 1991 |pmid= 2065333 |doi= }} | ||
*{{cite journal | | *{{cite journal | vauthors=Imai T, Kakizaki M, Nishimura M, Yoshie O |title=Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. |journal=J. Immunol. |volume=155 |issue= 3 |pages= 1229–39 |year= 1995 |pmid= 7636191 |doi= }} | ||
*{{cite journal | | *{{cite journal | vauthors=Dong JT, Lamb PW, Rinker-Schaeffer CW |title=KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. |journal=Science |volume=268 |issue= 5212 |pages= 884–6 |year= 1995 |pmid= 7754374 |doi=10.1126/science.7754374 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Mannion BA, Berditchevski F, Kraeft SK |title=Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). |journal=J. Immunol. |volume=157 |issue= 5 |pages= 2039–47 |year= 1996 |pmid= 8757325 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Szöllósi J, Horejsí V, Bene L |title=Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. |journal=J. Immunol. |volume=157 |issue= 7 |pages= 2939–46 |year= 1996 |pmid= 8816400 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Dong JT, Isaacs WB, Barrett JC, Isaacs JT |title=Genomic organization of the human KAI1 metastasis-suppressor gene. |journal=Genomics |volume=41 |issue= 1 |pages= 25–32 |year= 1997 |pmid= 9126478 |doi= 10.1006/geno.1997.4618 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Hammond C, Denzin LK, Pan M |title=The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. |journal=J. Immunol. |volume=161 |issue= 7 |pages= 3282–91 |year= 1998 |pmid= 9759843 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Horváth G, Serru V, Clay D |title=CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. |journal=J. Biol. Chem. |volume=273 |issue= 46 |pages= 30537–43 |year= 1998 |pmid= 9804823 |doi=10.1074/jbc.273.46.30537 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Serru V, Le Naour F, Billard M |title=Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. | volume=340 |journal=Biochem. J. |issue= 1|pages= 103–11 |year= 1999 |pmid= 10229664 |doi=10.1042/0264-6021:3400103 | pmc=1220227 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Lombardi DP, Geradts J, Foley JF |title=Loss of KAI1 expression in the progression of colorectal cancer. |journal=Cancer Res. |volume=59 |issue= 22 |pages= 5724–31 |year= 1999 |pmid= 10582691 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Shibagaki N, Hanada K, Yamashita H |title=Overexpression of CD82 on human T cells enhances LFA-1 / ICAM-1-mediated cell-cell adhesion: functional association between CD82 and LFA-1 in T cell activation. |journal=Eur. J. Immunol. |volume=29 |issue= 12 |pages= 4081–91 |year= 2000 |pmid= 10602019 |doi=10.1002/(SICI)1521-4141(199912)29:12<4081::AID-IMMU4081>3.0.CO;2-I |display-authors=etal}} | ||
*{{cite journal | vauthors=Nakamura K, Mitamura T, Takahashi T |title=Importance of the major extracellular domain of CD9 and the epidermal growth factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-regulation of binding and activity. |journal=J. Biol. Chem. |volume=275 |issue= 24 |pages= 18284–90 |year= 2000 |pmid= 10749879 |doi= 10.1074/jbc.M907971199 |display-authors=etal}} | |||
*{{cite journal | | *{{cite journal | vauthors=Odintsova E, Sugiura T, Berditchevski F |title=Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. |journal=Curr. Biol. |volume=10 |issue= 16 |pages= 1009–12 |year= 2001 |pmid= 10985391 |doi=10.1016/S0960-9822(00)00652-7 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Ono M, Handa K, Withers DA, Hakomori S |title=Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. |journal=Biochem. Biophys. Res. Commun. |volume=279 |issue= 3 |pages= 744–50 |year= 2001 |pmid= 11162423 |doi= 10.1006/bbrc.2000.4030 }} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
Line 89: | Line 47: | ||
==External links== | ==External links== | ||
* {{MeshName|CD82+protein,+human}} | * {{MeshName|CD82+protein,+human}} | ||
* {{UCSC gene info|CD82}} | |||
{{NLM content}} | {{NLM content}} | ||
{{Clusters of differentiation}} | {{Clusters of differentiation}} | ||
{{Membrane proteins}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = no | |||
| update_citations = yes | |||
}} | |||
[[Category:Clusters of differentiation]] | [[Category:Clusters of differentiation]] | ||
{{ | |||
{{membrane-protein-stub}} |
Revision as of 09:24, 30 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
CD82 (Cluster of Differentiation 82) is a human protein encoded by the CD82 gene.[1]
This metastasis suppressor gene product is a membrane glycoprotein that is a member of the transmembrane 4 superfamily. Expression of this gene has been shown to be downregulated in tumor progression of human cancers and can be activated by p53 through a consensus binding sequence in the promoter. Its expression and that of p53 are strongly correlated, and the loss of expression of these two proteins is associated with poor survival for prostate cancer patients. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.[1]
Interactions
CD82 (gene) has been shown to interact with CD19,[2][3] CD63[4] and CD234[5]
See also
References
- ↑ 1.0 1.1 "Entrez Gene: CD82 CD82 molecule".
- ↑ Imai, T; Kakizaki M; Nishimura M; Yoshie O (August 1995). "Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82". J. Immunol. UNITED STATES. 155 (3): 1229–39. ISSN 0022-1767. PMID 7636191.
- ↑ Horváth, G; Serru V; Clay D; Billard M; Boucheix C; Rubinstein E (November 1998). "CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82". J. Biol. Chem. UNITED STATES. 273 (46): 30537–43. doi:10.1074/jbc.273.46.30537. ISSN 0021-9258. PMID 9804823.
- ↑ Hammond, C; Denzin L K; Pan M; Griffith J M; Geuze H J; Cresswell P (October 1998). "The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules". J. Immunol. UNITED STATES. 161 (7): 3282–91. ISSN 0022-1767. PMID 9759843.
- ↑ Hur, Jin; Choi, Jae-Il; Lee, Hwan; Nham, Pniel; Kim, Tae-Won; Chae, Cheong-Whan; Yun, Ji-Yeon; Kang, Jin-A.; Kang, Jeehoon (2016-04-07). "CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages". Cell Stem Cell. 18 (4): 508–521. doi:10.1016/j.stem.2016.01.013. ISSN 1875-9777. PMID 26996598.
Further reading
- Baek SH (2006). "A novel link between SUMO modification and cancer metastasis". Cell Cycle. 5 (14): 1492–5. doi:10.4161/cc.5.14.3008. PMID 16861889.
- Imai T, Fukudome K, Takagi S, et al. (1992). "C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63". J. Immunol. 149 (9): 2879–86. PMID 1401919.
- Ichikawa T, Ichikawa Y, Dong J, et al. (1992). "Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11". Cancer Res. 52 (12): 3486–90. PMID 1596907.
- Gaugitsch HW, Hofer E, Huber NE, et al. (1991). "A new superfamily of lymphoid and melanoma cell proteins with extensive homology to Schistosoma mansoni antigen Sm23". Eur. J. Immunol. 21 (2): 377–83. doi:10.1002/eji.1830210219. PMID 1842498.
- Ichikawa T, Ichikawa Y, Isaacs JT (1991). "Genetic factors and suppression of metastatic ability of prostatic cancer". Cancer Res. 51 (14): 3788–92. PMID 2065333.
- Imai T, Kakizaki M, Nishimura M, Yoshie O (1995). "Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82". J. Immunol. 155 (3): 1229–39. PMID 7636191.
- Dong JT, Lamb PW, Rinker-Schaeffer CW, et al. (1995). "KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2". Science. 268 (5212): 884–6. doi:10.1126/science.7754374. PMID 7754374.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Mannion BA, Berditchevski F, Kraeft SK, et al. (1996). "Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29)". J. Immunol. 157 (5): 2039–47. PMID 8757325.
- Szöllósi J, Horejsí V, Bene L, et al. (1996). "Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY". J. Immunol. 157 (7): 2939–46. PMID 8816400.
- Dong JT, Isaacs WB, Barrett JC, Isaacs JT (1997). "Genomic organization of the human KAI1 metastasis-suppressor gene". Genomics. 41 (1): 25–32. doi:10.1006/geno.1997.4618. PMID 9126478.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Hammond C, Denzin LK, Pan M, et al. (1998). "The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules". J. Immunol. 161 (7): 3282–91. PMID 9759843.
- Horváth G, Serru V, Clay D, et al. (1998). "CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82". J. Biol. Chem. 273 (46): 30537–43. doi:10.1074/jbc.273.46.30537. PMID 9804823.
- Serru V, Le Naour F, Billard M, et al. (1999). "Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions". Biochem. J. 340 (1): 103–11. doi:10.1042/0264-6021:3400103. PMC 1220227. PMID 10229664.
- Lombardi DP, Geradts J, Foley JF, et al. (1999). "Loss of KAI1 expression in the progression of colorectal cancer". Cancer Res. 59 (22): 5724–31. PMID 10582691.
- Shibagaki N, Hanada K, Yamashita H, et al. (2000). "Overexpression of CD82 on human T cells enhances LFA-1 / ICAM-1-mediated cell-cell adhesion: functional association between CD82 and LFA-1 in T cell activation". Eur. J. Immunol. 29 (12): 4081–91. doi:10.1002/(SICI)1521-4141(199912)29:12<4081::AID-IMMU4081>3.0.CO;2-I. PMID 10602019.
- Nakamura K, Mitamura T, Takahashi T, et al. (2000). "Importance of the major extracellular domain of CD9 and the epidermal growth factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-regulation of binding and activity". J. Biol. Chem. 275 (24): 18284–90. doi:10.1074/jbc.M907971199. PMID 10749879.
- Odintsova E, Sugiura T, Berditchevski F (2001). "Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1". Curr. Biol. 10 (16): 1009–12. doi:10.1016/S0960-9822(00)00652-7. PMID 10985391.
- Ono M, Handa K, Withers DA, Hakomori S (2001). "Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells". Biochem. Biophys. Res. Commun. 279 (3): 744–50. doi:10.1006/bbrc.2000.4030. PMID 11162423.
External links
- CD82+protein,+human at the US National Library of Medicine Medical Subject Headings (MeSH)
- Human CD82 genome location and CD82 gene details page in the UCSC Genome Browser.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
Stub icon | This membrane protein–related article is a stub. You can help Wikipedia by expanding it. |