Neural cell adhesion molecule: Difference between revisions

Jump to navigation Jump to search
m →‎top: task, replaced: Frontiers in immunology → Frontiers in Immunology using AWB
 
imported>Iztwoz
→‎top: link
 
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}
'''Neural cell adhesion molecule''' ('''NCAM'''), also called '''CD56''', is a homophilic binding glycoprotein expressed on the surface of [[neurons]], [[glia]] and [[skeletal muscle]]. Although CD56 is often considered a marker of neural lineage commitment due to its discovery site, CD56 expression is also found in, among others, the hematopoietic system. Here, the expression of CD56 is most stringently associated with, but certainly not limited to, [[natural killer cells]]. CD56 has been detected on other lymphoid cells, including gamma delta (γδ) Τ cells and activated CD8+ T cells, as well as on dendritic cells.<ref>{{cite journal|last1=Van Acker|first1=HH|last2=Capsomidis|first2=A|last3=Smits|first3=EL|last4=Van Tendeloo|first4=VF|title=CD56 in the Immune System: More Than a Marker for Cytotoxicity?|journal=Frontiers in Immunology|date=2017|volume=8|pages=892|doi=10.3389/fimmu.2017.00892|pmid=28791027}}</ref> NCAM has been implicated as having a role in cell–cell adhesion,<ref>[http://www.pathologyoutlines.com/cd5099.html#CD56 Pathology Outlines]</ref> neurite outgrowth, synaptic plasticity, and learning and memory.
'''Neural cell adhesion molecule''' ('''NCAM'''), also called '''CD56''', is a homophilic binding glycoprotein expressed on the surface of [[neurons]], [[glia]] and [[skeletal muscle]]. Although CD56 is often considered a marker of neural lineage commitment due to its discovery site, CD56 expression is also found in, among others, the hematopoietic system. Here, the expression of CD56 is most stringently associated with, but certainly not limited to, [[natural killer cells]]. CD56 has been detected on other lymphoid cells, including [[Gamma delta T cell|gamma delta (γδ) Τ cells]] and activated [[CD8+ T cell]]s, as well as on dendritic cells.<ref>{{cite journal | vauthors = Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF | title = CD56 in the Immune System: More Than a Marker for Cytotoxicity? | journal = Frontiers in Immunology | volume = 8 | pages = 892 | date = 2017 | pmid = 28791027 | pmc = 5522883 | doi = 10.3389/fimmu.2017.00892 }}</ref> NCAM has been implicated as having a role in cell–cell adhesion,<ref>[http://www.pathologyoutlines.com/cd5099.html#CD56 Pathology Outlines]</ref> neurite outgrowth, synaptic plasticity, and learning and memory.


==Forms, domains and homophilic binding ==
==Forms, domains and homophilic binding ==


NCAM is a glycoprotein of Immunoglobulin (Ig) superfamily.
NCAM is a glycoprotein of Immunoglobulin (Ig) superfamily.
At least 27 alternatively spliced NCAM mRNAs are produced, giving a wide diversity of NCAM isoforms.<ref>{{cite journal | vauthors = Reyes AA, Small SJ, Akeson R | title = At least 27 alternatively spliced forms of the neural cell adhesion molecule mRNA are expressed during rat heart development | journal = Molecular and Cellular Biology | volume = 11 | issue = 3 | pages = 1654–61 | date = Mar 1991 | pmid = 1996115 | pmc = 369464 | doi=10.1128/mcb.11.3.1654}}</ref> The three main isoforms of NCAM vary only in their [[cytoplasmic]] domain:  
At least 27 alternatively spliced NCAM mRNAs are produced, giving a wide diversity of NCAM isoforms.<ref>{{cite journal | vauthors = Reyes AA, Small SJ, Akeson R | title = At least 27 alternatively spliced forms of the neural cell adhesion molecule mRNA are expressed during rat heart development | journal = Molecular and Cellular Biology | volume = 11 | issue = 3 | pages = 1654–61 | date = March 1991 | pmid = 1996115 | pmc = 369464 | doi = 10.1128/mcb.11.3.1654 }}</ref> The three main isoforms of NCAM vary only in their [[cytoplasmic]] domain:  
* NCAM-120kDa (GPI anchored)  
* NCAM-120kDa (GPI anchored)  
* NCAM-140kDa (short cytoplasmic domain)  
* NCAM-140kDa (short cytoplasmic domain)  
Line 18: Line 18:
Another layer of complexity is created by the insertion of other "minor" exons in the NCAM transcript. The two most notable are:
Another layer of complexity is created by the insertion of other "minor" exons in the NCAM transcript. The two most notable are:
* the VASE ('''VA'''riable domain '''S'''pliced '''E'''xon) exon which is thought to correlate with an inhibition of the neurite outgrowth promoting properties of NCAM.
* the VASE ('''VA'''riable domain '''S'''pliced '''E'''xon) exon which is thought to correlate with an inhibition of the neurite outgrowth promoting properties of NCAM.
* the MSD ('''M'''uscle '''S'''pecific '''D'''omain), which is thought to play a positive role in myoblast fusion.<ref name="Suzuki2003">{{cite journal | vauthors = Suzuki M, Angata K, Nakayama J, Fukuda M | title = Polysialic acid and mucin type o-glycans on the neural cell adhesion molecule differentially regulate myoblast fusion | journal = The Journal of Biological Chemistry | volume = 278 | issue = 49 | pages = 49459–68 | date = Dec 2003 | pmid = 13679364 | doi = 10.1074/jbc.M308316200 }}</ref> In skeletal muscle it is found in all three NCAM isoforms, increasing their [[molecular mass|MW]], giving NCAM-125, NCAM-145, and NCAM-185 isoforms, but is most commonly found in the NCAM-125 isoform.<ref name="Suzuki2003" />
* the MSD ('''M'''uscle '''S'''pecific '''D'''omain), which is thought to play a positive role in myoblast fusion.<ref name="Suzuki2003">{{cite journal | vauthors = Suzuki M, Angata K, Nakayama J, Fukuda M | title = Polysialic acid and mucin type o-glycans on the neural cell adhesion molecule differentially regulate myoblast fusion | journal = The Journal of Biological Chemistry | volume = 278 | issue = 49 | pages = 49459–68 | date = December 2003 | pmid = 13679364 | doi = 10.1074/jbc.M308316200 }}</ref> In skeletal muscle it is found in all three NCAM isoforms, increasing their [[molecular mass|MW]], giving NCAM-125, NCAM-145, and NCAM-185 isoforms, but is most commonly found in the NCAM-125 isoform.<ref name="Suzuki2003" />


== Posttranslational modification ==
== Posttranslational modification ==


NCAM exhibits [[glycoform]]s as it can be posttranslationally modified by the addition of [[polysialic acid]] (PSA) to the fifth Ig domain, which is thought to abrogate its homophilic binding properties and can lead to reduced cell adhesion important in cell migration and invasion. PSA has been shown to be critical in learning and memory. Removal of PSA from NCAM by the enzyme [[endoneuraminidase]] (EndoN) has been shown to abolish [[long-term potentiation]] (LTP) and [[long-term depression]] (LTD).<ref>{{cite journal | vauthors = Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M | title = The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation | journal = Journal of Neuroscience Research | volume = 45 | issue = 2 | pages = 143–52 | date = Jul 1996 | pmid = 8843031 | doi = 10.1002/(SICI)1097-4547(19960715)45:2<143::AID-JNR6>3.0.CO;2-A }}</ref><ref>{{cite journal | vauthors = Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A | title = In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid | journal = The European Journal of Neuroscience | volume = 23 | issue = 9 | pages = 2255–64 | date = May 2006 | pmid = 16706834 | doi = 10.1111/j.1460-9568.2006.04771.x }}</ref><ref>{{cite journal | vauthors = Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A | title = Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm | journal = The Journal of Neuroscience | volume = 26 | issue = 42 | pages = 10888–109898 | date = Oct 2006 | pmid = 17050727 | doi = 10.1523/JNEUROSCI.0878-06.2006 }}</ref>
NCAM exhibits [[glycoform]]s as it can be posttranslationally modified by the addition of [[polysialic acid]] (PSA) to the fifth Ig domain, which is thought to abrogate its homophilic binding properties and can lead to reduced cell adhesion important in cell migration and invasion. PSA has been shown to be critical in learning and memory. Removal of PSA from NCAM by the enzyme [[endoneuraminidase]] (EndoN) has been shown to abolish [[long-term potentiation]] (LTP) and [[long-term depression]] (LTD).<ref>{{cite journal | vauthors = Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M | title = The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation | journal = Journal of Neuroscience Research | volume = 45 | issue = 2 | pages = 143–52 | date = July 1996 | pmid = 8843031 | doi = 10.1002/(SICI)1097-4547(19960715)45:2<143::AID-JNR6>3.0.CO;2-A }}</ref><ref>{{cite journal | vauthors = Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A | title = In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid | journal = The European Journal of Neuroscience | volume = 23 | issue = 9 | pages = 2255–64 | date = May 2006 | pmid = 16706834 | doi = 10.1111/j.1460-9568.2006.04771.x }}</ref><ref>{{cite journal | vauthors = Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A | title = Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm | journal = The Journal of Neuroscience | volume = 26 | issue = 42 | pages = 10888–109898 | date = October 2006 | pmid = 17050727 | doi = 10.1523/JNEUROSCI.0878-06.2006 }}</ref>


== Expression in normal cells ==
== Expression in normal cells ==
Line 48: Line 48:
== Alzheimers ==
== Alzheimers ==


NCAM2 is found in lower levels in synapses in the hippocampuses of Alzheimers sufferers and is found to be broken down by beta-amyloid<ref>{{cite journal | vauthors = Leshchyns'ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V | title = Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease | journal = Nature Communications | volume = 6 | pages = 8836 | year = 2015 | pmid = 26611261 | doi = 10.1038/ncomms9836 | pmc=4674770}}</ref>
NCAM2 is found in lower levels in synapses in the hippocampuses of Alzheimers sufferers and is found to be broken down by beta-amyloid<ref>{{cite journal | vauthors = Leshchyns'ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V | title = Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease | journal = Nature Communications | volume = 6 | pages = 8836 | date = November 2015 | pmid = 26611261 | pmc = 4674770 | doi = 10.1038/ncomms9836 }}</ref>


== Anti-NCAM therapy ==
== Anti-NCAM therapy ==


NCAM has been used as a target molecule for experimental antibody-based immunotherapy. Successful radioimmunolocalisation of metastases was demonstrated after giving injections of NCAM-binding 123J-UJ13a or 131J-UJ13a radioimmunoconjugates to children with neuroblastoma. Patients with small cell lung cancer were treated with the anti-NCAM immunotoxine huN901-DM1 in two different clinical studies, revealing acceptable toxicity and signs of clinical response.<ref>{{cite journal | vauthors = Jensen M, Berthold F | title = Targeting the neural cell adhesion molecule in cancer | journal = Cancer Letters | volume = 258 | issue = 1 | pages = 9–21 | date = Dec 2007 | pmid = 17949897 | doi = 10.1016/j.canlet.2007.09.004 }}</ref>
NCAM has been used as a target molecule for experimental antibody-based immunotherapy. Successful radioimmunolocalisation of metastases was demonstrated after giving injections of NCAM-binding 123J-UJ13a or 131J-UJ13a radioimmunoconjugates to children with neuroblastoma. Patients with small cell lung cancer were treated with the anti-NCAM immunotoxine huN901-DM1 in two different clinical studies, revealing acceptable toxicity and signs of clinical response.<ref>{{cite journal | vauthors = Jensen M, Berthold F | title = Targeting the neural cell adhesion molecule in cancer | journal = Cancer Letters | volume = 258 | issue = 1 | pages = 9–21 | date = December 2007 | pmid = 17949897 | doi = 10.1016/j.canlet.2007.09.004 }}</ref>


== References ==
== References ==
{{reflist|2}}
{{reflist|32em}}


== External links ==
== External links ==

Latest revision as of 19:22, 27 December 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Neural cell adhesion molecule (NCAM), also called CD56, is a homophilic binding glycoprotein expressed on the surface of neurons, glia and skeletal muscle. Although CD56 is often considered a marker of neural lineage commitment due to its discovery site, CD56 expression is also found in, among others, the hematopoietic system. Here, the expression of CD56 is most stringently associated with, but certainly not limited to, natural killer cells. CD56 has been detected on other lymphoid cells, including gamma delta (γδ) Τ cells and activated CD8+ T cells, as well as on dendritic cells.[1] NCAM has been implicated as having a role in cell–cell adhesion,[2] neurite outgrowth, synaptic plasticity, and learning and memory.

Forms, domains and homophilic binding

NCAM is a glycoprotein of Immunoglobulin (Ig) superfamily. At least 27 alternatively spliced NCAM mRNAs are produced, giving a wide diversity of NCAM isoforms.[3] The three main isoforms of NCAM vary only in their cytoplasmic domain:

  • NCAM-120kDa (GPI anchored)
  • NCAM-140kDa (short cytoplasmic domain)
  • NCAM-180kDa (long cytoplasmic domain)

The extracellular domain of NCAM consists of five immunoglobulin-like (Ig) domains followed by two fibronectin type III (FNIII) domains. The different domains of NCAM have been shown to have different roles, with the Ig domains being involved in homophilic binding to NCAM, and the FNIII domains being involved signaling leading to neurite outgrowth.

Homophilic binding occurs between NCAM molecules on opposing surfaces (trans-) and NCAM molecules on the same surface (cis-)1. There is much controversy as to how exactly NCAM homophilic binding is arranged both in trans- and cis-. Current models suggest trans- homophilic binding occurs between two NCAM molecules binding antiparallel between all five Ig domains or just IgI and IgII. cis- homophilic binding is thought to occur by interactions between both IgI and IgII, and IgI and IgIII, forming a higher order NCAM multimer. Both cis- and trans- NCAM homophilic binding have been shown to be important in NCAM “activation” leading to neurite outgrowth.

Minor exons

Another layer of complexity is created by the insertion of other "minor" exons in the NCAM transcript. The two most notable are:

  • the VASE (VAriable domain Spliced Exon) exon which is thought to correlate with an inhibition of the neurite outgrowth promoting properties of NCAM.
  • the MSD (Muscle Specific Domain), which is thought to play a positive role in myoblast fusion.[4] In skeletal muscle it is found in all three NCAM isoforms, increasing their MW, giving NCAM-125, NCAM-145, and NCAM-185 isoforms, but is most commonly found in the NCAM-125 isoform.[4]

Posttranslational modification

NCAM exhibits glycoforms as it can be posttranslationally modified by the addition of polysialic acid (PSA) to the fifth Ig domain, which is thought to abrogate its homophilic binding properties and can lead to reduced cell adhesion important in cell migration and invasion. PSA has been shown to be critical in learning and memory. Removal of PSA from NCAM by the enzyme endoneuraminidase (EndoN) has been shown to abolish long-term potentiation (LTP) and long-term depression (LTD).[5][6][7]

Expression in normal cells

The neural cell adhesion molecule NCAM1 appears on early embryonic cells and is important in the formation of cell collectives and their boundaries at sites of morphogenesis.

Later in development, NCAM1 (CD56) expression is found on various differentiated tissues and is a major CAM mediating adhesion among neurons and between neurons and muscle.

Function

NCAM is thought to signal to induce neurite outgrowth via the fibroblast growth factor receptor (FGFR) and act upon the p59Fyn signaling pathway.

In nerves, NCAM1 regulates homophilic (like-like) interactions between neurons and between neurons and muscle; it associates with fibroblast growth factor receptor (FGFR) and stimulates tyrosine kinase activity of receptor to induce neurite outgrowth. When neural crest cells stop making N-CAM and N-cadherin, and start displaying integrin receptors, cells separate and migrate.

During hematopoiesis, CD56 is the prototypic marker of NK cells, also present on subset of CD4+ T cells and CD8+ T cells.

In cell adhesion, CD56 contributes to cell-cell adhesion or cell-matrix adhesion during embryonic development.

Pathology

In anatomic pathology, pathologists make use of CD56 immunohistochemistry to recognize certain tumors.

Alzheimers

NCAM2 is found in lower levels in synapses in the hippocampuses of Alzheimers sufferers and is found to be broken down by beta-amyloid[8]

Anti-NCAM therapy

NCAM has been used as a target molecule for experimental antibody-based immunotherapy. Successful radioimmunolocalisation of metastases was demonstrated after giving injections of NCAM-binding 123J-UJ13a or 131J-UJ13a radioimmunoconjugates to children with neuroblastoma. Patients with small cell lung cancer were treated with the anti-NCAM immunotoxine huN901-DM1 in two different clinical studies, revealing acceptable toxicity and signs of clinical response.[9]

References

  1. Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF (2017). "CD56 in the Immune System: More Than a Marker for Cytotoxicity?". Frontiers in Immunology. 8: 892. doi:10.3389/fimmu.2017.00892. PMC 5522883. PMID 28791027.
  2. Pathology Outlines
  3. Reyes AA, Small SJ, Akeson R (March 1991). "At least 27 alternatively spliced forms of the neural cell adhesion molecule mRNA are expressed during rat heart development". Molecular and Cellular Biology. 11 (3): 1654–61. doi:10.1128/mcb.11.3.1654. PMC 369464. PMID 1996115.
  4. 4.0 4.1 Suzuki M, Angata K, Nakayama J, Fukuda M (December 2003). "Polysialic acid and mucin type o-glycans on the neural cell adhesion molecule differentially regulate myoblast fusion". The Journal of Biological Chemistry. 278 (49): 49459–68. doi:10.1074/jbc.M308316200. PMID 13679364.
  5. Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (July 1996). "The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation". Journal of Neuroscience Research. 45 (2): 143–52. doi:10.1002/(SICI)1097-4547(19960715)45:2<143::AID-JNR6>3.0.CO;2-A. PMID 8843031.
  6. Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A (May 2006). "In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid". The European Journal of Neuroscience. 23 (9): 2255–64. doi:10.1111/j.1460-9568.2006.04771.x. PMID 16706834.
  7. Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A (October 2006). "Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm". The Journal of Neuroscience. 26 (42): 10888–109898. doi:10.1523/JNEUROSCI.0878-06.2006. PMID 17050727.
  8. Leshchyns'ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V (November 2015). "Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease". Nature Communications. 6: 8836. doi:10.1038/ncomms9836. PMC 4674770. PMID 26611261.
  9. Jensen M, Berthold F (December 2007). "Targeting the neural cell adhesion molecule in cancer". Cancer Letters. 258 (1): 9–21. doi:10.1016/j.canlet.2007.09.004. PMID 17949897.

External links