CD69 (Cluster of Differentiation 69) is a human transmembrane C-Type lectinprotein encoded by the CD69gene. It is an early activation marker that is expressed in hematopoietic stem cells, T cells, and many other cell types in the immune system.[1] It is also implicated in T cell differentation as well as lymphocyte retention in lymphoid organs.
The activation of T lymphocytes and Natural Killer (NK) Cells, both in vivo and in vitro, induces expression of CD69. This molecule, which appears to be the earliest inducible cell surface glycoprotein acquired during lymphoid activation, is involved in lymphocyte proliferation and functions as a signal-transmitting receptor in lymphocytes, including natural killer (NK) cells, and platelets (Cambiaggi et al., 1992) [supplied by OMIM].[2]
Structure and ligands
The gene encoding CD69 is located in the NK gene complex on chromosome 6 and chromosome 12 in mice and humans respectively.[3] Activation signaling pathways in lymphocytes, NK cells, dendritic cells and other cell types upregulate transcription factors, such as NF-κB, ERG-1 (erythroblast transformation-specific related gene-1), and AP-1 (activator protein), in order to promote the transcription of the CD69 gene.[4][3] The CD69 protein is subject to post-translational modifications. Namely, it is differentially glycosylated to produce either a 28 kDa peptide or a 32 kDa peptide. Two of these peptides randomly combine to form a homodimer linked by a disulfide bond.[3] These subunits have a C-type lectin domain (CTLD) that binds ligands, a transmembrane domain, and a cytoplasmic tail that relays signals to the cell interior.[3]
CD69 lacks the characteristic Ca2+ binding residues in CTLDs, indicating that it might bind to proteins rather than carbohydrates, the usual ligand of CTLDs.[5][3] It has been shown that CD69 binds to Gal-1, a carbohydrate binding protein located on some dendritic cells and macrophages, in addition to Myl9/12.[4] Other ligands have yet to be identified. However, it is known that binding of the ligands initiates the Jak/Stat signaling pathway as well as the mTOR/HIF1-α pathway.[5][4][3] CD69 is also known to interact with and mediate S1P and LAT1 receptors, which influence lymphocyte egress in lymphoid organs among other responses.[6][4] More work must be done to fully characterize CD69-ligand interactions as well as CD69’s method of transducing intracellular signals.
T cell differentiation
CD69 expression has been associated with both regulatory T cell (Treg), memory T cell and Bcl6 loCD69 hiLZ GC B plasmablast precursors.[7] Treg precursors exit the thymus expressing CD69 and complete differentiation into Treg cells in peripheral tissues when they encounter antigens and other cytokines, like IL-2.[8] Through the JAK/STAT signaling pathway, CD69 activation also induces the production of TGF-β as well as IL-2, which contribute to the differentiation of Treg cells as mentioned above.[4] Furthermore, CD69 is also known to be upregulated by NF-κB signaling at the onset of an immune response. A prolonged immune response is then maintained by the non-canonical NF-κB pathway, which in turn is associated with Treg differentiation.[3]
In addition to Treg differentiation, CD69 is a common marker of precursor and mature resident memory T cells (TRMs) that are localized in peripheral tissues.[9][5] TGF-β is also responsible for the development of TRMs, thus promoting TRM differentiation in a manner similar to Treg differentiation.[10]
Lymphocyte migration
Most lymphocytes express sphingosine-1-phosphate receptors (S1P1-5), which are G protein-coupled receptors located in the cell membrane that bind to the ligand sphingosine-1-phosphate (S1P). S1P is a sphingolipid metabolite that is abundant in the bloodstream and, upon binding to S1P1, promotes lymphocyte egress from lymphoid organs so they can travel to affected tissues.[11][4] However, when a T cell is activated in a lymphoid organ through cytokine and TCR signaling, CD69 is expressed and forms a complex with S1P1 (not S1P3 or S1P5). This association is dependent on the interaction between the CD69 transmembrane domain and helix-4 of S1P1. Following formation of this complex, S1P1 is internalized and is destroyed within the cell, inhibiting its ability to bind S1P and initiate downstream signaling. This in turn results in temporary lymphocyte retention in the lymph organs.[4] It is thought that retention of lymphocytes in the lymph nodes may increase the chance of successful lymphocyte activation, especially if the initial activation signal was weak. Similarly, CD69 expressed in thymocytes following positive selection may ensure that T cells fully mature in the thymus prior to entering circulation.[6]
Some research has shown that S1P1 and CD69 co-regulate so that when CD69 is in greater abundance, it results in the removal of S1P1 from the membrane as mentioned above.[6] However, if S1P1 is more abundant than CD69, as would be the case in mature T cells, CD69 membrane localization is reduced. In this manner, regulation of CD69 and S1P1 expression and localization jointly impact lymphocyte egress and migration.[6]
Cambiaggi C, Scupoli MT, Cestari T, Gerosa F, Carra G, Tridente G, Accolla RS (1992). "Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12". Immunogenetics. 36 (2): 117–20. doi:10.1007/BF00215288. PMID1612643.
López-Cabrera M, Muñoz E, Blázquez MV, Ursa MA, Santis AG, Sánchez-Madrid F (September 1995). "Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements". The Journal of Biological Chemistry. 270 (37): 21545–51. doi:10.1074/jbc.270.37.21545. PMID7665567.
Bezouska K, Nepovím A, Horváth O, Pospísil M, Hamann J, Feizi T (March 1995). "CD 69 antigen of human lymphocytes is a calcium-dependent carbohydrate-binding protein". Biochemical and Biophysical Research Communications. 208 (1): 68–74. doi:10.1006/bbrc.1995.1306. PMID7887967.
Santis AG, López-Cabrera M, Hamann J, Strauss M, Sánchez-Madrid F (July 1994). "Structure of the gene coding for the human early lymphocyte activation antigen CD69: a C-type lectin receptor evolutionarily related with the gene families of natural killer cell-specific receptors". European Journal of Immunology. 24 (7): 1692–7. doi:10.1002/eji.1830240735. PMID8026529.
Ziegler SF, Ramsdell F, Hjerrild KA, Armitage RJ, Grabstein KH, Hennen KB, Farrah T, Fanslow WC, Shevach EM, Alderson MR (July 1993). "Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens". European Journal of Immunology. 23 (7): 1643–8. doi:10.1002/eji.1830230737. PMID8100776.
Hamann J, Fiebig H, Strauss M (June 1993). "Expression cloning of the early activation antigen CD69, a type II integral membrane protein with a C-type lectin domain". Journal of Immunology. 150 (11): 4920–7. PMID8496594.
Krowka JF, Cuevas B, Maron DC, Steimer KS, Ascher MS, Sheppard HW (January 1996). "Expression of CD69 after in vitro stimulation: a rapid method for quantitating impaired lymphocyte responses in HIV-infected individuals". Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology. 11 (1): 95–104. doi:10.1097/00042560-199601010-00013. PMID8528739.
Vance BA, Bennett MJ, Ward Y, Gress RG, Kearse KP (August 1999). "Distinct but dispensable N-glycosylation of human CD69 proteins". Archives of Biochemistry and Biophysics. 368 (2): 214–20. doi:10.1006/abbi.1999.1322. PMID10441371.
Blázquez MV, Macho A, Ortiz C, Lucena C, López-Cabrera M, Sánchez-Madrid F, Muñoz E (September 1999). "Extracellular HIV type 1 Tat protein induces CD69 expression through NF-kappaB activation: possible correlation with cell surface Tat-binding proteins". AIDS Research and Human Retroviruses. 15 (13): 1209–18. doi:10.1089/088922299310304. PMID10480634.
Llera AS, Viedma F, Sánchez-Madrid F, Tormo J (March 2001). "Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69". The Journal of Biological Chemistry. 276 (10): 7312–9. doi:10.1074/jbc.M008573200. PMID11036086.
Natarajan K, Sawicki MW, Margulies DH, Mariuzza RA (December 2000). "Crystal structure of human CD69: a C-type lectin-like activation marker of hematopoietic cells". Biochemistry. 39 (48): 14779–86. doi:10.1021/bi0018180. PMID11101293.
Liu X, Schrager JA, Lange GD, Marsh JW (August 2001). "HIV Nef-mediated cellular phenotypes are differentially expressed as a function of intracellular Nef concentrations". The Journal of Biological Chemistry. 276 (35): 32763–70. doi:10.1074/jbc.M101025200. PMID11438519.
Yoshimura C, Yamaguchi M, Iikura M, Izumi S, Kudo K, Nagase H, Ishii A, Walls AF, Ra C, Iwata T, Igarashi T, Yamamoto K, Hirai K (May 2002). "Activation markers of human basophils: CD69 expression is strongly and preferentially induced by IL-3". The Journal of Allergy and Clinical Immunology. 109 (5): 817–23. doi:10.1067/mai.2002.123532. PMID11994706.
Pisegna S, Zingoni A, Pirozzi G, Cinque B, Cifone MG, Morrone S, Piccoli M, Frati L, Palmieri G, Santoni A (July 2002). "Src-dependent Syk activation controls CD69-mediated signaling and function on human NK cells". Journal of Immunology. 169 (1): 68–74. doi:10.4049/jimmunol.169.1.68. PMID12077230.
Liu CC, Huang KJ, Lin YS, Yeh TM, Liu HS, Lei HY (October 2002). "Transient CD4/CD8 ratio inversion and aberrant immune activation during dengue virus infection". Journal of Medical Virology. 68 (2): 241–52. doi:10.1002/jmv.10198. PMID12210415.
Foerster M, Haefner D, Kroegel C (October 2002). "Bcl-2-mediated regulation of CD69-induced apoptosis of human eosinophils: identification and characterization of a novel receptor-induced mechanism and relationship to CD95-transduced signalling". Scandinavian Journal of Immunology. 56 (4): 417–28. doi:10.1046/j.1365-3083.2002.01111.x. PMID12234263.
Weigel G, Griesmacher A, Karimi A, Zuckermann AO, Grimm M, Mueller MM (October 2002). "Effect of mycophenolate mofetil therapy on lymphocyte activation in heart transplant recipients". The Journal of Heart and Lung Transplantation. 21 (10): 1074–9. doi:10.1016/S1053-2498(02)00440-0. PMID12398872.