CD38 is a multifunctional ectoenzyme that catalyzes the synthesis and hydrolysis of cyclic ADP-ribose (cADPR) from NAD+ to ADP-ribose. These reaction products are essential for the regulation of intracellular Ca2+.[5]
Clinical significance
The loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications including social amnesia possibly related to autism.[5][6]
The CD38 protein is a marker of cell activation. It has been connected to HIV infection, leukemias, myelomas, solid tumors, type II diabetes mellitus and bone metabolism, as well as some genetically determined conditions.
CD38 produces an enzyme which regulates the release of oxytocin within the central nervous system.[6]
A gradual increase in CD38 has been implicated in the decline of NAD+ with age.[7],[8]
CD38 has been used as a prognostic marker in leukemia.[12] CD38 is also use as a target for Daratumumab, a medicine that has been approved for the treatment of multiple myeloma
References
↑Orciani M, Trubiani O, Guarnieri S, Ferrero E, Di Primio R (October 2008). "CD38 is constitutively expressed in the nucleus of human hematopoietic cells". J. Cell. Biochem. 105 (3): 905–12. doi:10.1002/jcb.21887. PMID18759251.
↑ 5.05.1Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (July 2008). "Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology". Physiol. Rev. 88 (3): 841–86. doi:10.1152/physrev.00035.2007. PMID18626062.
↑ 6.06.1Higashida H, Yokoyama S, Huang JJ, Liu L, Ma WJ, Akther S, Higashida C, Kikuchi M, Minabe Y, Munesue T (November 2012). "Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38". Neurochem. Int. 61 (6): 828–38. doi:10.1016/j.neuint.2012.01.030. PMID22366648.
↑Camacho-Pereira J, Tarragó MG, Chini CC, Nin V, Escande C, Warner GM, Puranik AS, Schoon RA, Reid JM, Galina A, Chini EN. "CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism". Cell Metab. 23 (6): 1127–1139. doi:10.1016/j.cmet.2016.05.006.
↑Schultz M, Sinclair D. "Why NAD+ Declines during Aging: It's Destroyed". Cell Metab. 23 (6): 965–966. doi:10.1016/j.cmet.2016.05.022.
↑Xia C, Ribeiro M, Scott S, Lonial S (2016). "Daratumumab: monoclonal antibody therapy to treat multiple myeloma". Drugs of Today. 52 (10): 551–560. doi:10.1358/dot.2016.52.10.2543308. PMID27910963.
↑Burgler S (2015). "Role of CD38 Expression in Diagnosis and Pathogenesis of Chronic Lymphocytic Leukemia and Its Potential as Therapeutic Target". Critical Reviews in Immunology. 35 (5): 417–32. doi:10.1615/CritRevImmunol.v35.i5.50. PMID26853852.
States DJ, Walseth TF, Lee HC (1993). "Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38". Trends Biochem. Sci. 17 (12): 495. doi:10.1016/0968-0004(92)90337-9. PMID1471258.
Malavasi F, Funaro A, Roggero S, et al. (1994). "Human CD38: a glycoprotein in search of a function". Immunol. Today. 15 (3): 95–7. doi:10.1016/0167-5699(94)90148-1. PMID8172650.
Funaro A, Malavasi F (1999). "Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker". J. Biol. Regul. Homeost. Agents. 13 (1): 54–61. PMID10432444.
Partidá-Sánchez S, Rivero-Nava L, Shi G, Lund FE (2007). "CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses". Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. 590: 171–83. doi:10.1007/978-0-387-34814-8_12. ISBN978-0-387-34813-1. PMID17191385.
Jackson DG, Bell JI (1990). "Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation". J. Immunol. 144 (7): 2811–5. PMID2319135.
Dianzani U, Bragardo M, Buonfiglio D, et al. (1995). "Modulation of CD4 lateral interaction with lymphocyte surface molecules induced by HIV-1 gp120". Eur. J. Immunol. 25 (5): 1306–11. doi:10.1002/eji.1830250526. PMID7539755.
Nakagawara K, Mori M, Takasawa S, et al. (1995). "Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15". Cytogenet. Cell Genet. 69 (1–2): 38–9. doi:10.1159/000133933. PMID7835083.
Tohgo A, Takasawa S, Noguchi N, et al. (1994). "Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38". J. Biol. Chem. 269 (46): 28555–7. PMID7961800.
Takasawa S, Tohgo A, Noguchi N, et al. (1994). "Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP". J. Biol. Chem. 268 (35): 26052–4. PMID8253715.
Nata K, Takamura T, Karasawa T, et al. (1997). "Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing". Gene. 186 (2): 285–92. doi:10.1016/S0378-1119(96)00723-8. PMID9074508.
Feito MJ, Bragardo M, Buonfiglio D, et al. (1997). "gp 120s derived from four syncytium-inducing HIV-1 strains induce different patterns of CD4 association with lymphocyte surface molecules". Int. Immunol. 9 (8): 1141–7. doi:10.1093/intimm/9.8.1141. PMID9263011.
Ferrero E, Malavasi F (1997). "Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide+-converting enzymes: extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase". J. Immunol. 159 (8): 3858–65. PMID9378973.
Deaglio S, Morra M, Mallone R, et al. (1998). "Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member". J. Immunol. 160 (1): 395–402. PMID9551996.
Yagui K, Shimada F, Mimura M, et al. (1998). "A missense mutation in the CD38 gene, a novel factor for insulin secretion: association with Type II diabetes mellitus in Japanese subjects and evidence of abnormal function when expressed in vitro". Diabetologia. 41 (9): 1024–8. doi:10.1007/s001250051026. PMID9754820.