CD23

Revision as of 21:18, 24 October 2017 by 128.23.255.8 (talk) (→‎Clinical significance: changed mantle cell leukemia to mantle cell lymphoma)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

CD23, also known as Fc epsilon RII, or FcεRII, is the "low-affinity" receptor for IgE, an antibody isotype involved in allergy and resistance to parasites, and is important in regulation of IgE levels. Unlike many of the antibody receptors, CD23 is a C-type lectin. It is found on mature B cells, activated macrophages, eosinophils, follicular dendritic cells, and platelets.

There are two forms of CD23: CD23a and CD23b. CD23a is present on follicular B cells, whereas CD23b requires IL-4 to be expressed on T-cells, monocytes, Langerhans cells, eosinophils, and macrophages.[1]

Function

CD23 is known to have a role of transportation in antibody feedback regulation. Antigens which enter the blood stream can be captured by antigen specific IgE antibodies. The IgE immune complexes that are formed bind to CD23 molecules on B cells, and are transported to the B cell follicles of the spleen. The antigen is then transferred from CD23+ B cells to CD11c+ antigen presenting cells. The CD11c+ cells in turn present the antigen to CD4+ T cells, which can lead to an enhanced antibody response.[2]

Clinical significance

The allergen responsible in dust mite allergy Der p 1 is known to cleave CD23 from a cells surface. As CD23 is soluble, it can move freely and interact with cells in plasma. Recent studies have shown that increased levels of soluble CD23 cause the recruitment of non-sensitised B-cells in the presentation of antigen peptides to allergen-specific B-cells, therefore increasing the production of allergen specific IgE. IgE, in turn, is known to upregulate the cellular expression of CD23 and Fc epsilon RI (high-affinity IgE receptor).

In flow cytometry, CD23 is helpful in the differentiation of chronic lymphocytic leukemia (CD23-positive) from mantle cell lymphoma (CD23-negative).[3] CD23 can also be demonstrated in germinal centre B-cells using immunohistochemistry, but it is not present in the resting cells of the surrounding mantle zone. Lymphomas arising from the mantle zone are generally negative for CD23, but most B-cell chronic lymphomocytic leukaemias and low-grade B-cell lymphomas are positive, allowing immunohistochemistry to distinguish these conditions, which otherwise have a similar appearance. Reed–Sternberg cells are usually positive for CD23.[4]

See also

References

  1. Lichtman AH, Abbas AK (2003). Cellular and molecular immunology. Philadelphia: Saunders. pp. 324–325. ISBN 0-7216-0008-5.
  2. Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik KO, Hallgren J, Heyman B (2011). Metzger DW, ed. "IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells". PLOS ONE. 6 (7): e21760. doi:10.1371/journal.pone.0021760. PMC 3130775. PMID 21765910.
  3. Barna G, Reiniger L, Tátrai P, Kopper L, Matolcsy A (Sep 2008). "The cut-off levels of CD23 expression in the differential diagnosis of MCL and CLL". Hematological Oncology. 26 (3): 167–70. doi:10.1002/hon.855. PMID 18381689.
  4. Cooper K, Leong AS (2003). Manual of diagnostic antibodies for immunohistology. London: Greenwich Medical Media. p. 95. ISBN 1-84110-100-1.

Further reading

External links